Do historical metrics and developers communication aid to predict change couplings?

Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2015-06, Vol.13 (6), p.1979-1988
Hauptverfasser: Wiese, I. S., Kuroda, R. T., Ré, R., Bulhóes, R. S., Oliva, G. A., Gerosa, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988
container_issue 6
container_start_page 1979
container_title Revista IEEE América Latina
container_volume 13
creator Wiese, I. S.
Kuroda, R. T.
Ré, R.
Bulhóes, R. S.
Oliva, G. A.
Gerosa, M. A.
description Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsâ€, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects
doi_str_mv 10.1109/TLA.2015.7164225
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2015_7164225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7164225</ieee_id><sourcerecordid>3755412291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3wUvAc2de06TNScb8CQUPznPI0rcto21q0gr-93Zsiqf3hff5vgcfQq6BzQCYuluW81nKQMxykFmaihMyAZEVCVMqPf2Xz8lFjDvGeCELPiHvD55uXex9cNbUtMF-DJGatqIVfmHtOwyRWt80QzsSvfMtNa6ivaddwMrZntqtaTc4MkNXu3YT7y_J2drUEa-Oc0o-nh6Xi5ekfHt-XczLxKYp9AlfScE4SCgEcmPylENhlWQiYwoqnksDrDIKDOfSVgo4CCzQMptblq1wzafk9nC3C_5zwNjrnR9CO77UIFUh8pwDGyl2oGzwMQZc6y64xoRvDUzv1elRnd6r00d1Y-XmUHGI-If_bn8AsORpkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698577310</pqid></control><display><type>article</type><title>Do historical metrics and developers communication aid to predict change couplings?</title><source>IEEE Electronic Library (IEL)</source><creator>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</creator><creatorcontrib>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</creatorcontrib><description>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsâ€, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2015.7164225</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>change coupling ; communication network ; Conway's law ; Measurement ; Open source software ; Receivers ; social network analysis ; structural holes metrics</subject><ispartof>Revista IEEE América Latina, 2015-06, Vol.13 (6), p.1979-1988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7164225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7164225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wiese, I. S.</creatorcontrib><creatorcontrib>Kuroda, R. T.</creatorcontrib><creatorcontrib>Ré, R.</creatorcontrib><creatorcontrib>Bulhóes, R. S.</creatorcontrib><creatorcontrib>Oliva, G. A.</creatorcontrib><creatorcontrib>Gerosa, M. A.</creatorcontrib><title>Do historical metrics and developers communication aid to predict change couplings?</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsâ€, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</description><subject>change coupling</subject><subject>communication network</subject><subject>Conway's law</subject><subject>Measurement</subject><subject>Open source software</subject><subject>Receivers</subject><subject>social network analysis</subject><subject>structural holes metrics</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3wUvAc2de06TNScb8CQUPznPI0rcto21q0gr-93Zsiqf3hff5vgcfQq6BzQCYuluW81nKQMxykFmaihMyAZEVCVMqPf2Xz8lFjDvGeCELPiHvD55uXex9cNbUtMF-DJGatqIVfmHtOwyRWt80QzsSvfMtNa6ivaddwMrZntqtaTc4MkNXu3YT7y_J2drUEa-Oc0o-nh6Xi5ekfHt-XczLxKYp9AlfScE4SCgEcmPylENhlWQiYwoqnksDrDIKDOfSVgo4CCzQMptblq1wzafk9nC3C_5zwNjrnR9CO77UIFUh8pwDGyl2oGzwMQZc6y64xoRvDUzv1elRnd6r00d1Y-XmUHGI-If_bn8AsORpkQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Wiese, I. S.</creator><creator>Kuroda, R. T.</creator><creator>Ré, R.</creator><creator>Bulhóes, R. S.</creator><creator>Oliva, G. A.</creator><creator>Gerosa, M. A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201506</creationdate><title>Do historical metrics and developers communication aid to predict change couplings?</title><author>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>change coupling</topic><topic>communication network</topic><topic>Conway's law</topic><topic>Measurement</topic><topic>Open source software</topic><topic>Receivers</topic><topic>social network analysis</topic><topic>structural holes metrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wiese, I. S.</creatorcontrib><creatorcontrib>Kuroda, R. T.</creatorcontrib><creatorcontrib>Ré, R.</creatorcontrib><creatorcontrib>Bulhóes, R. S.</creatorcontrib><creatorcontrib>Oliva, G. A.</creatorcontrib><creatorcontrib>Gerosa, M. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wiese, I. S.</au><au>Kuroda, R. T.</au><au>Ré, R.</au><au>Bulhóes, R. S.</au><au>Oliva, G. A.</au><au>Gerosa, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do historical metrics and developers communication aid to predict change couplings?</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2015-06</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>1979</spage><epage>1988</epage><pages>1979-1988</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsâ€, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2015.7164225</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2015-06, Vol.13 (6), p.1979-1988
issn 1548-0992
1548-0992
language eng
recordid cdi_crossref_primary_10_1109_TLA_2015_7164225
source IEEE Electronic Library (IEL)
subjects change coupling
communication network
Conway's law
Measurement
Open source software
Receivers
social network analysis
structural holes metrics
title Do historical metrics and developers communication aid to predict change couplings?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20historical%20metrics%20and%20developers%20communication%20aid%20to%20predict%20change%20couplings?&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Wiese,%20I.%20S.&rft.date=2015-06&rft.volume=13&rft.issue=6&rft.spage=1979&rft.epage=1988&rft.pages=1979-1988&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2015.7164225&rft_dat=%3Cproquest_RIE%3E3755412291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698577310&rft_id=info:pmid/&rft_ieee_id=7164225&rfr_iscdi=true