Do historical metrics and developers communication aid to predict change couplings?
Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committ...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2015-06, Vol.13 (6), p.1979-1988 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1988 |
---|---|
container_issue | 6 |
container_start_page | 1979 |
container_title | Revista IEEE América Latina |
container_volume | 13 |
creator | Wiese, I. S. Kuroda, R. T. Ré, R. Bulhóes, R. S. Oliva, G. A. Gerosa, M. A. |
description | Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsââ¬, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects |
doi_str_mv | 10.1109/TLA.2015.7164225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2015_7164225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7164225</ieee_id><sourcerecordid>3755412291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3wUvAc2de06TNScb8CQUPznPI0rcto21q0gr-93Zsiqf3hff5vgcfQq6BzQCYuluW81nKQMxykFmaihMyAZEVCVMqPf2Xz8lFjDvGeCELPiHvD55uXex9cNbUtMF-DJGatqIVfmHtOwyRWt80QzsSvfMtNa6ivaddwMrZntqtaTc4MkNXu3YT7y_J2drUEa-Oc0o-nh6Xi5ekfHt-XczLxKYp9AlfScE4SCgEcmPylENhlWQiYwoqnksDrDIKDOfSVgo4CCzQMptblq1wzafk9nC3C_5zwNjrnR9CO77UIFUh8pwDGyl2oGzwMQZc6y64xoRvDUzv1elRnd6r00d1Y-XmUHGI-If_bn8AsORpkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698577310</pqid></control><display><type>article</type><title>Do historical metrics and developers communication aid to predict change couplings?</title><source>IEEE Electronic Library (IEL)</source><creator>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</creator><creatorcontrib>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</creatorcontrib><description>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsââ¬, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2015.7164225</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>change coupling ; communication network ; Conway's law ; Measurement ; Open source software ; Receivers ; social network analysis ; structural holes metrics</subject><ispartof>Revista IEEE América Latina, 2015-06, Vol.13 (6), p.1979-1988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7164225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7164225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wiese, I. S.</creatorcontrib><creatorcontrib>Kuroda, R. T.</creatorcontrib><creatorcontrib>Ré, R.</creatorcontrib><creatorcontrib>Bulhóes, R. S.</creatorcontrib><creatorcontrib>Oliva, G. A.</creatorcontrib><creatorcontrib>Gerosa, M. A.</creatorcontrib><title>Do historical metrics and developers communication aid to predict change couplings?</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsââ¬, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</description><subject>change coupling</subject><subject>communication network</subject><subject>Conway's law</subject><subject>Measurement</subject><subject>Open source software</subject><subject>Receivers</subject><subject>social network analysis</subject><subject>structural holes metrics</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3wUvAc2de06TNScb8CQUPznPI0rcto21q0gr-93Zsiqf3hff5vgcfQq6BzQCYuluW81nKQMxykFmaihMyAZEVCVMqPf2Xz8lFjDvGeCELPiHvD55uXex9cNbUtMF-DJGatqIVfmHtOwyRWt80QzsSvfMtNa6ivaddwMrZntqtaTc4MkNXu3YT7y_J2drUEa-Oc0o-nh6Xi5ekfHt-XczLxKYp9AlfScE4SCgEcmPylENhlWQiYwoqnksDrDIKDOfSVgo4CCzQMptblq1wzafk9nC3C_5zwNjrnR9CO77UIFUh8pwDGyl2oGzwMQZc6y64xoRvDUzv1elRnd6r00d1Y-XmUHGI-If_bn8AsORpkQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Wiese, I. S.</creator><creator>Kuroda, R. T.</creator><creator>Ré, R.</creator><creator>Bulhóes, R. S.</creator><creator>Oliva, G. A.</creator><creator>Gerosa, M. A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201506</creationdate><title>Do historical metrics and developers communication aid to predict change couplings?</title><author>Wiese, I. S. ; Kuroda, R. T. ; Ré, R. ; Bulhóes, R. S. ; Oliva, G. A. ; Gerosa, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-3b650316185e3aa72318c96054091d376a10da91a336cd91315e8ec0c7c04bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>change coupling</topic><topic>communication network</topic><topic>Conway's law</topic><topic>Measurement</topic><topic>Open source software</topic><topic>Receivers</topic><topic>social network analysis</topic><topic>structural holes metrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wiese, I. S.</creatorcontrib><creatorcontrib>Kuroda, R. T.</creatorcontrib><creatorcontrib>Ré, R.</creatorcontrib><creatorcontrib>Bulhóes, R. S.</creatorcontrib><creatorcontrib>Oliva, G. A.</creatorcontrib><creatorcontrib>Gerosa, M. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wiese, I. S.</au><au>Kuroda, R. T.</au><au>Ré, R.</au><au>Bulhóes, R. S.</au><au>Oliva, G. A.</au><au>Gerosa, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do historical metrics and developers communication aid to predict change couplings?</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2015-06</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>1979</spage><epage>1988</epage><pages>1979-1988</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Developers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that "organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizationsââ¬, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2015.7164225</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2015-06, Vol.13 (6), p.1979-1988 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TLA_2015_7164225 |
source | IEEE Electronic Library (IEL) |
subjects | change coupling communication network Conway's law Measurement Open source software Receivers social network analysis structural holes metrics |
title | Do historical metrics and developers communication aid to predict change couplings? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20historical%20metrics%20and%20developers%20communication%20aid%20to%20predict%20change%20couplings?&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Wiese,%20I.%20S.&rft.date=2015-06&rft.volume=13&rft.issue=6&rft.spage=1979&rft.epage=1988&rft.pages=1979-1988&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2015.7164225&rft_dat=%3Cproquest_RIE%3E3755412291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698577310&rft_id=info:pmid/&rft_ieee_id=7164225&rfr_iscdi=true |