Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams
Sliding window aggregation, which extracts summaries from data streams, is a core operation in streaming analysis. Though existing sliding window algorithms that perform single eviction and insertion operations can achieve a worst-case time complexity of O(1) O(1) for in-order streams, real-world d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2025-02, Vol.37 (2), p.698-709 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 709 |
---|---|
container_issue | 2 |
container_start_page | 698 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 37 |
creator | Li, Jianjun Deng, Yuhui Huang, Jiande Yi, Zhou Yang, Qifen Min, Geyong |
description | Sliding window aggregation, which extracts summaries from data streams, is a core operation in streaming analysis. Though existing sliding window algorithms that perform single eviction and insertion operations can achieve a worst-case time complexity of O(1) O(1) for in-order streams, real-world data streams often involve out-of-order data and exhibit burst data characteristics, which pose performance challenges to these sliding window algorithms. To address this challenging issue, we propose Gecko - a novel sliding window aggregation algorithm that supports bulk eviction. Gecko leverages a granular-based eviction strategy for various bulk sizes, enabling efficient bulk eviction while maintaining the performance close to that of in-order stream algorithms for single evictions. For large data bulks, Gecko performs coarse-grained eviction at the chunk level, followed by fine-grained eviction using leftward binary tree aggregation (LTA) as a complementary method. Moreover, Gecko partitions data based on chunks to prevent the impacts of out-of-order data on other chunks, thereby enabling efficient handling of out-of-order data streams. We conduct extensive experiments to evaluate the performance of Gecko. Experimental results demonstrate that Gecko exhibits superior performance over other solutions, which is consistent with theoretical expectations. In real-world data scenarios, Gecko improves the average throughput of the state-of-the-art algorithm b_FiBA by 1.7 times, with a maximum improvement of up to 3.5 times. Gecko also demonstrates the best latency performance among all compared schemes. |
doi_str_mv | 10.1109/TKDE.2024.3511334 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3511334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777062</ieee_id><sourcerecordid>10_1109_TKDE_2024_3511334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632-993237caca321e45e11135c7e43724c580143ee8ca0957071fbb8748b5a321493</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHj9qh10fISAqddFKLCPXnQTTNEFOWsTfk9AuWM3V6J6R5hByD2wEwOLH9ds8GXHG5UgoACHkBRmAUibiEMNll5mESAqpr8lN03wyxow2MCAuRbern2iS5955rFq6Kv3WVwV999W2_qaToghY2NbXVbdqP2gabHUobYimtsEtnR7KHU2O3v01lkcMdOoLOretpas2oN03t-Qqt2WDd-c5JOvnZD17iRbL9HU2WURuLHgUx4IL7ayzggNKhdD9oZxGKTSXThkGUiAaZ1msNNOQbzZGS7NRPSBjMSRwOutC3TQB8-wr-L0NPxmwrJeU9ZKyXlJ2ltQxDyfGI-K_vtaajbn4BcU_Yes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jianjun ; Deng, Yuhui ; Huang, Jiande ; Yi, Zhou ; Yang, Qifen ; Min, Geyong</creator><creatorcontrib>Li, Jianjun ; Deng, Yuhui ; Huang, Jiande ; Yi, Zhou ; Yang, Qifen ; Min, Geyong</creatorcontrib><description><![CDATA[Sliding window aggregation, which extracts summaries from data streams, is a core operation in streaming analysis. Though existing sliding window algorithms that perform single eviction and insertion operations can achieve a worst-case time complexity of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="deng-ieq1-3511334.gif"/> </inline-formula> for in-order streams, real-world data streams often involve out-of-order data and exhibit burst data characteristics, which pose performance challenges to these sliding window algorithms. To address this challenging issue, we propose Gecko - a novel sliding window aggregation algorithm that supports bulk eviction. Gecko leverages a granular-based eviction strategy for various bulk sizes, enabling efficient bulk eviction while maintaining the performance close to that of in-order stream algorithms for single evictions. For large data bulks, Gecko performs coarse-grained eviction at the chunk level, followed by fine-grained eviction using leftward binary tree aggregation (LTA) as a complementary method. Moreover, Gecko partitions data based on chunks to prevent the impacts of out-of-order data on other chunks, thereby enabling efficient handling of out-of-order data streams. We conduct extensive experiments to evaluate the performance of Gecko. Experimental results demonstrate that Gecko exhibits superior performance over other solutions, which is consistent with theoretical expectations. In real-world data scenarios, Gecko improves the average throughput of the state-of-the-art algorithm b_FiBA by 1.7 times, with a maximum improvement of up to 3.5 times. Gecko also demonstrates the best latency performance among all compared schemes.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3511334</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Binary trees ; Bulk eviction ; Computer science ; incremental computation ; Indexes ; Out of order ; out-of-order data streams ; Partitioning algorithms ; sliding window aggregation ; stream algorithm ; Streams ; Throughput ; Time complexity ; Windows</subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-02, Vol.37 (2), p.698-709</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c632-993237caca321e45e11135c7e43724c580143ee8ca0957071fbb8748b5a321493</cites><orcidid>0000-0002-1639-8020 ; 0009-0008-1203-9558 ; 0000-0003-3266-1885 ; 0000-0002-1522-8943 ; 0000-0003-1395-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Deng, Yuhui</creatorcontrib><creatorcontrib>Huang, Jiande</creatorcontrib><creatorcontrib>Yi, Zhou</creatorcontrib><creatorcontrib>Yang, Qifen</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><title>Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Sliding window aggregation, which extracts summaries from data streams, is a core operation in streaming analysis. Though existing sliding window algorithms that perform single eviction and insertion operations can achieve a worst-case time complexity of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="deng-ieq1-3511334.gif"/> </inline-formula> for in-order streams, real-world data streams often involve out-of-order data and exhibit burst data characteristics, which pose performance challenges to these sliding window algorithms. To address this challenging issue, we propose Gecko - a novel sliding window aggregation algorithm that supports bulk eviction. Gecko leverages a granular-based eviction strategy for various bulk sizes, enabling efficient bulk eviction while maintaining the performance close to that of in-order stream algorithms for single evictions. For large data bulks, Gecko performs coarse-grained eviction at the chunk level, followed by fine-grained eviction using leftward binary tree aggregation (LTA) as a complementary method. Moreover, Gecko partitions data based on chunks to prevent the impacts of out-of-order data on other chunks, thereby enabling efficient handling of out-of-order data streams. We conduct extensive experiments to evaluate the performance of Gecko. Experimental results demonstrate that Gecko exhibits superior performance over other solutions, which is consistent with theoretical expectations. In real-world data scenarios, Gecko improves the average throughput of the state-of-the-art algorithm b_FiBA by 1.7 times, with a maximum improvement of up to 3.5 times. Gecko also demonstrates the best latency performance among all compared schemes.]]></description><subject>Aggregates</subject><subject>Binary trees</subject><subject>Bulk eviction</subject><subject>Computer science</subject><subject>incremental computation</subject><subject>Indexes</subject><subject>Out of order</subject><subject>out-of-order data streams</subject><subject>Partitioning algorithms</subject><subject>sliding window aggregation</subject><subject>stream algorithm</subject><subject>Streams</subject><subject>Throughput</subject><subject>Time complexity</subject><subject>Windows</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHj9qh10fISAqddFKLCPXnQTTNEFOWsTfk9AuWM3V6J6R5hByD2wEwOLH9ds8GXHG5UgoACHkBRmAUibiEMNll5mESAqpr8lN03wyxow2MCAuRbern2iS5955rFq6Kv3WVwV999W2_qaToghY2NbXVbdqP2gabHUobYimtsEtnR7KHU2O3v01lkcMdOoLOretpas2oN03t-Qqt2WDd-c5JOvnZD17iRbL9HU2WURuLHgUx4IL7ayzggNKhdD9oZxGKTSXThkGUiAaZ1msNNOQbzZGS7NRPSBjMSRwOutC3TQB8-wr-L0NPxmwrJeU9ZKyXlJ2ltQxDyfGI-K_vtaajbn4BcU_Yes</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Li, Jianjun</creator><creator>Deng, Yuhui</creator><creator>Huang, Jiande</creator><creator>Yi, Zhou</creator><creator>Yang, Qifen</creator><creator>Min, Geyong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1639-8020</orcidid><orcidid>https://orcid.org/0009-0008-1203-9558</orcidid><orcidid>https://orcid.org/0000-0003-3266-1885</orcidid><orcidid>https://orcid.org/0000-0002-1522-8943</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></search><sort><creationdate>202502</creationdate><title>Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams</title><author>Li, Jianjun ; Deng, Yuhui ; Huang, Jiande ; Yi, Zhou ; Yang, Qifen ; Min, Geyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632-993237caca321e45e11135c7e43724c580143ee8ca0957071fbb8748b5a321493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aggregates</topic><topic>Binary trees</topic><topic>Bulk eviction</topic><topic>Computer science</topic><topic>incremental computation</topic><topic>Indexes</topic><topic>Out of order</topic><topic>out-of-order data streams</topic><topic>Partitioning algorithms</topic><topic>sliding window aggregation</topic><topic>stream algorithm</topic><topic>Streams</topic><topic>Throughput</topic><topic>Time complexity</topic><topic>Windows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Deng, Yuhui</creatorcontrib><creatorcontrib>Huang, Jiande</creatorcontrib><creatorcontrib>Yi, Zhou</creatorcontrib><creatorcontrib>Yang, Qifen</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jianjun</au><au>Deng, Yuhui</au><au>Huang, Jiande</au><au>Yi, Zhou</au><au>Yang, Qifen</au><au>Min, Geyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-02</date><risdate>2025</risdate><volume>37</volume><issue>2</issue><spage>698</spage><epage>709</epage><pages>698-709</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Sliding window aggregation, which extracts summaries from data streams, is a core operation in streaming analysis. Though existing sliding window algorithms that perform single eviction and insertion operations can achieve a worst-case time complexity of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="deng-ieq1-3511334.gif"/> </inline-formula> for in-order streams, real-world data streams often involve out-of-order data and exhibit burst data characteristics, which pose performance challenges to these sliding window algorithms. To address this challenging issue, we propose Gecko - a novel sliding window aggregation algorithm that supports bulk eviction. Gecko leverages a granular-based eviction strategy for various bulk sizes, enabling efficient bulk eviction while maintaining the performance close to that of in-order stream algorithms for single evictions. For large data bulks, Gecko performs coarse-grained eviction at the chunk level, followed by fine-grained eviction using leftward binary tree aggregation (LTA) as a complementary method. Moreover, Gecko partitions data based on chunks to prevent the impacts of out-of-order data on other chunks, thereby enabling efficient handling of out-of-order data streams. We conduct extensive experiments to evaluate the performance of Gecko. Experimental results demonstrate that Gecko exhibits superior performance over other solutions, which is consistent with theoretical expectations. In real-world data scenarios, Gecko improves the average throughput of the state-of-the-art algorithm b_FiBA by 1.7 times, with a maximum improvement of up to 3.5 times. Gecko also demonstrates the best latency performance among all compared schemes.]]></abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3511334</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1639-8020</orcidid><orcidid>https://orcid.org/0009-0008-1203-9558</orcidid><orcidid>https://orcid.org/0000-0003-3266-1885</orcidid><orcidid>https://orcid.org/0000-0002-1522-8943</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2025-02, Vol.37 (2), p.698-709 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2024_3511334 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregates Binary trees Bulk eviction Computer science incremental computation Indexes Out of order out-of-order data streams Partitioning algorithms sliding window aggregation stream algorithm Streams Throughput Time complexity Windows |
title | Gecko: Efficient Sliding Window Aggregation With Granular-Based Bulk Eviction Over Big Data Streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gecko:%20Efficient%20Sliding%20Window%20Aggregation%20With%20Granular-Based%20Bulk%20Eviction%20Over%20Big%20Data%20Streams&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Jianjun&rft.date=2025-02&rft.volume=37&rft.issue=2&rft.spage=698&rft.epage=709&rft.pages=698-709&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3511334&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3511334%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777062&rfr_iscdi=true |