ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph
Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fil...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2025-03, Vol.37 (3), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 37 |
creator | Liao, Longquan Zheng, Linjiang Shang, Jiaxing Li, Xu Chen, Fengwen |
description | Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link. |
doi_str_mv | 10.1109/TKDE.2024.3510689 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3510689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777929</ieee_id><sourcerecordid>10_1109_TKDE_2024_3510689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHtuJY3ZRoQW1El1kHzn2GEIfiZzQir_HVSvEamZx7tXMIeQe2ASA6cdy8fwy4YzLiUiBZbm-ICNI0zzhoOEy7kxCIoVU1-Sm778YY7nKYUSwKFezJ1rsaOFMNzR7pCVuuzaYDV1hGL5DbYam3dFZMFs8tGFNfRsivMfQm9BErBgGY9c9jdBfdLFrDxt0H0jnwXSft-TKm02Pd-c5JuXspZy-Jsv3-du0WCY2EzqeKrD2OSjutGfO1Ny7VFrHfaqUk86Ast6aLH6JWtUIIpOeSQ0arVaCizGBU60Nbd8H9FUXmq0JPxWw6qipOmqqjpqqs6aYeThlGkT8xyulNNfiF-qZZPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</creator><creatorcontrib>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</creatorcontrib><description>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3510689</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adversarial attack ; Closed box ; deep learning ; dynamic network ; Heuristic algorithms ; Knowledge graphs ; Noise ; Perturbation methods ; Predictive models ; Representation learning ; Robustness ; temporal knowledge graph ; Timing</subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-03, Vol.37 (3), p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</cites><orcidid>0000-0001-9024-6271 ; 0000-0002-9180-2425 ; 0000-0002-0370-7111 ; 0000-0002-3152-1760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Longquan</creatorcontrib><creatorcontrib>Zheng, Linjiang</creatorcontrib><creatorcontrib>Shang, Jiaxing</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Chen, Fengwen</creatorcontrib><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</description><subject>Adaptation models</subject><subject>Adversarial attack</subject><subject>Closed box</subject><subject>deep learning</subject><subject>dynamic network</subject><subject>Heuristic algorithms</subject><subject>Knowledge graphs</subject><subject>Noise</subject><subject>Perturbation methods</subject><subject>Predictive models</subject><subject>Representation learning</subject><subject>Robustness</subject><subject>temporal knowledge graph</subject><subject>Timing</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHtuJY3ZRoQW1El1kHzn2GEIfiZzQir_HVSvEamZx7tXMIeQe2ASA6cdy8fwy4YzLiUiBZbm-ICNI0zzhoOEy7kxCIoVU1-Sm778YY7nKYUSwKFezJ1rsaOFMNzR7pCVuuzaYDV1hGL5DbYam3dFZMFs8tGFNfRsivMfQm9BErBgGY9c9jdBfdLFrDxt0H0jnwXSft-TKm02Pd-c5JuXspZy-Jsv3-du0WCY2EzqeKrD2OSjutGfO1Ny7VFrHfaqUk86Ast6aLH6JWtUIIpOeSQ0arVaCizGBU60Nbd8H9FUXmq0JPxWw6qipOmqqjpqqs6aYeThlGkT8xyulNNfiF-qZZPc</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Liao, Longquan</creator><creator>Zheng, Linjiang</creator><creator>Shang, Jiaxing</creator><creator>Li, Xu</creator><creator>Chen, Fengwen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9024-6271</orcidid><orcidid>https://orcid.org/0000-0002-9180-2425</orcidid><orcidid>https://orcid.org/0000-0002-0370-7111</orcidid><orcidid>https://orcid.org/0000-0002-3152-1760</orcidid></search><sort><creationdate>202503</creationdate><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><author>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation models</topic><topic>Adversarial attack</topic><topic>Closed box</topic><topic>deep learning</topic><topic>dynamic network</topic><topic>Heuristic algorithms</topic><topic>Knowledge graphs</topic><topic>Noise</topic><topic>Perturbation methods</topic><topic>Predictive models</topic><topic>Representation learning</topic><topic>Robustness</topic><topic>temporal knowledge graph</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Longquan</creatorcontrib><creatorcontrib>Zheng, Linjiang</creatorcontrib><creatorcontrib>Shang, Jiaxing</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Chen, Fengwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Longquan</au><au>Zheng, Linjiang</au><au>Shang, Jiaxing</au><au>Li, Xu</au><au>Chen, Fengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-03</date><risdate>2025</risdate><volume>37</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3510689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9024-6271</orcidid><orcidid>https://orcid.org/0000-0002-9180-2425</orcidid><orcidid>https://orcid.org/0000-0002-0370-7111</orcidid><orcidid>https://orcid.org/0000-0002-3152-1760</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2025-03, Vol.37 (3), p.1-14 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2024_3510689 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adversarial attack Closed box deep learning dynamic network Heuristic algorithms Knowledge graphs Noise Perturbation methods Predictive models Representation learning Robustness temporal knowledge graph Timing |
title | ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATPF:%20An%20Adaptive%20Temporal%20Perturbation%20Framework%20for%20Adversarial%20Attacks%20on%20Temporal%20Knowledge%20Graph&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liao,%20Longquan&rft.date=2025-03&rft.volume=37&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3510689&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3510689%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777929&rfr_iscdi=true |