ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph

Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2025-03, Vol.37 (3), p.1-14
Hauptverfasser: Liao, Longquan, Zheng, Linjiang, Shang, Jiaxing, Li, Xu, Chen, Fengwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 3
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 37
creator Liao, Longquan
Zheng, Linjiang
Shang, Jiaxing
Li, Xu
Chen, Fengwen
description Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.
doi_str_mv 10.1109/TKDE.2024.3510689
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3510689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777929</ieee_id><sourcerecordid>10_1109_TKDE_2024_3510689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHtuJY3ZRoQW1El1kHzn2GEIfiZzQir_HVSvEamZx7tXMIeQe2ASA6cdy8fwy4YzLiUiBZbm-ICNI0zzhoOEy7kxCIoVU1-Sm778YY7nKYUSwKFezJ1rsaOFMNzR7pCVuuzaYDV1hGL5DbYam3dFZMFs8tGFNfRsivMfQm9BErBgGY9c9jdBfdLFrDxt0H0jnwXSft-TKm02Pd-c5JuXspZy-Jsv3-du0WCY2EzqeKrD2OSjutGfO1Ny7VFrHfaqUk86Ast6aLH6JWtUIIpOeSQ0arVaCizGBU60Nbd8H9FUXmq0JPxWw6qipOmqqjpqqs6aYeThlGkT8xyulNNfiF-qZZPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</creator><creatorcontrib>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</creatorcontrib><description>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3510689</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adversarial attack ; Closed box ; deep learning ; dynamic network ; Heuristic algorithms ; Knowledge graphs ; Noise ; Perturbation methods ; Predictive models ; Representation learning ; Robustness ; temporal knowledge graph ; Timing</subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-03, Vol.37 (3), p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</cites><orcidid>0000-0001-9024-6271 ; 0000-0002-9180-2425 ; 0000-0002-0370-7111 ; 0000-0002-3152-1760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Longquan</creatorcontrib><creatorcontrib>Zheng, Linjiang</creatorcontrib><creatorcontrib>Shang, Jiaxing</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Chen, Fengwen</creatorcontrib><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</description><subject>Adaptation models</subject><subject>Adversarial attack</subject><subject>Closed box</subject><subject>deep learning</subject><subject>dynamic network</subject><subject>Heuristic algorithms</subject><subject>Knowledge graphs</subject><subject>Noise</subject><subject>Perturbation methods</subject><subject>Predictive models</subject><subject>Representation learning</subject><subject>Robustness</subject><subject>temporal knowledge graph</subject><subject>Timing</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpHtuJY3ZRoQW1El1kHzn2GEIfiZzQir_HVSvEamZx7tXMIeQe2ASA6cdy8fwy4YzLiUiBZbm-ICNI0zzhoOEy7kxCIoVU1-Sm778YY7nKYUSwKFezJ1rsaOFMNzR7pCVuuzaYDV1hGL5DbYam3dFZMFs8tGFNfRsivMfQm9BErBgGY9c9jdBfdLFrDxt0H0jnwXSft-TKm02Pd-c5JuXspZy-Jsv3-du0WCY2EzqeKrD2OSjutGfO1Ny7VFrHfaqUk86Ast6aLH6JWtUIIpOeSQ0arVaCizGBU60Nbd8H9FUXmq0JPxWw6qipOmqqjpqqs6aYeThlGkT8xyulNNfiF-qZZPc</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Liao, Longquan</creator><creator>Zheng, Linjiang</creator><creator>Shang, Jiaxing</creator><creator>Li, Xu</creator><creator>Chen, Fengwen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9024-6271</orcidid><orcidid>https://orcid.org/0000-0002-9180-2425</orcidid><orcidid>https://orcid.org/0000-0002-0370-7111</orcidid><orcidid>https://orcid.org/0000-0002-3152-1760</orcidid></search><sort><creationdate>202503</creationdate><title>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</title><author>Liao, Longquan ; Zheng, Linjiang ; Shang, Jiaxing ; Li, Xu ; Chen, Fengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-213ebf8172d9f0dab2fd54cd2f577d4da17cfca6024e97be1364f04919ec97323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation models</topic><topic>Adversarial attack</topic><topic>Closed box</topic><topic>deep learning</topic><topic>dynamic network</topic><topic>Heuristic algorithms</topic><topic>Knowledge graphs</topic><topic>Noise</topic><topic>Perturbation methods</topic><topic>Predictive models</topic><topic>Representation learning</topic><topic>Robustness</topic><topic>temporal knowledge graph</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Longquan</creatorcontrib><creatorcontrib>Zheng, Linjiang</creatorcontrib><creatorcontrib>Shang, Jiaxing</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Chen, Fengwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Longquan</au><au>Zheng, Linjiang</au><au>Shang, Jiaxing</au><au>Li, Xu</au><au>Chen, Fengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-03</date><risdate>2025</risdate><volume>37</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Robustness is paramount for ensuring the reliability of knowledge graph models in safety-sensitive applications. While recent research has delved into adversarial attacks on static knowledge graph models, the exploration of more practical temporal knowledge graphs has been largely overlooked. To fill this gap, we present the Adaptive Temporal Perturbation Framework (ATPF), a novel adversarial attack framework aimed at probing the robustness of temporal knowledge graph (TKG) models. The general idea of ATPF is to inject perturbations into the victim model input to undermine the prediction. Firstly, we propose the Temporal Perturbation Prioritization (TPP) algorithm, which identifies the optimal time sequence for perturbation injection before initiating attacks. Subsequently, we design the Rank-Based Edge Manipulation (RBEM) algorithm, enabling the generation of both edge addition and removal perturbations under black-box setting. With ATPF, we present two adversarial attack methods: the stringent ATPF-hard and the more lenient ATPF-soft, each imposing different perturbation constraints. Our experimental evaluations on the link prediction task for TKGs demonstrate the superior attack performance of our methods compared to baseline methods. Furthermore, we find that strategically placing a single perturbation often suffices to successfully compromise a target link.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3510689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9024-6271</orcidid><orcidid>https://orcid.org/0000-0002-9180-2425</orcidid><orcidid>https://orcid.org/0000-0002-0370-7111</orcidid><orcidid>https://orcid.org/0000-0002-3152-1760</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2025-03, Vol.37 (3), p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2024_3510689
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adversarial attack
Closed box
deep learning
dynamic network
Heuristic algorithms
Knowledge graphs
Noise
Perturbation methods
Predictive models
Representation learning
Robustness
temporal knowledge graph
Timing
title ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATPF:%20An%20Adaptive%20Temporal%20Perturbation%20Framework%20for%20Adversarial%20Attacks%20on%20Temporal%20Knowledge%20Graph&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liao,%20Longquan&rft.date=2025-03&rft.volume=37&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3510689&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3510689%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777929&rfr_iscdi=true