Efficient Algorithms for Rank-Regret Minimization

Multi-criteria decision-making usually requires finding a small representative set from the database. A popular method, the regret minimization set (RMS) query, returns a size r r subset S S of the full dataset D D that minimizes the regret-ratio (the difference between the scores of top-1 in S S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2024-08, Vol.36 (8), p.3801-3816
Hauptverfasser: Xiao, Xingxing, Li, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3816
container_issue 8
container_start_page 3801
container_title IEEE transactions on knowledge and data engineering
container_volume 36
creator Xiao, Xingxing
Li, Jianzhong
description Multi-criteria decision-making usually requires finding a small representative set from the database. A popular method, the regret minimization set (RMS) query, returns a size r r subset S S of the full dataset D D that minimizes the regret-ratio (the difference between the scores of top-1 in S S and top-1 in D D , for any utility function). RMS is not shift invariant, causing inconsistency in results. Further, the regret-ratio is often a "made up" number and users may mistake its absolute value. Instead, users do understand the notion of rank. Therefore, in this paper, we consider finding a fixed-size set S S to minimize the maximum rank-regret (the rank of top-1 of S S in the sorted list of D D ) over all possible utility functions, called the rank-regret minimization (RRM) problem, which is shift invariant. In 2D space, we design an exact algorithm 2DRRM for RRM. In HD space, we propose an approximate algorithm HDRRM with theoretical guarantees on rank-regret. It combines the ideas of space discretization and clustering. Extensive experiments verify the efficiency and effectiveness of our algorithms. In particular, HDRRM always has the best output quality in experiments.
doi_str_mv 10.1109/TKDE.2024.3363009
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3363009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10423149</ieee_id><sourcerecordid>3078078296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-46db10e2cddab8ba9335e777a2bde7fea1426e6226b5bd0628e46b7788b645183</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPBQ8Nyal6RJehxzU3EijHkOSfs6M7d2Jt1BP70d3UF48H-H3_89-BFyCzQDoMXD6vVxljHKRMa55JQWZ2QEea5TBgWc9zsVkAou1CW5inFDKdVKw4jArK596bHpksl23Qbffe5iUrchWdrmK13iOmCXvPnG7_yv7XzbXJOL2m4j3pxyTD7ms9X0OV28P71MJ4u0ZEJ2qZCVA4qsrCrrtLMF5zkqpSxzFaoaLQgmUTImXe4qKplGIZ1SWjspctB8TO6Hu_vQfh8wdmbTHkLTvzScKt0PK2RPwUCVoY0xYG32we9s-DFAzdGMOZoxRzPmZKbv3A0dj4j_eME4iIL_ASy9Xjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078078296</pqid></control><display><type>article</type><title>Efficient Algorithms for Rank-Regret Minimization</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Xingxing ; Li, Jianzhong</creator><creatorcontrib>Xiao, Xingxing ; Li, Jianzhong</creatorcontrib><description><![CDATA[Multi-criteria decision-making usually requires finding a small representative set from the database. A popular method, the regret minimization set (RMS) query, returns a size <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq1-3363009.gif"/> </inline-formula> subset <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq2-3363009.gif"/> </inline-formula> of the full dataset <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq3-3363009.gif"/> </inline-formula> that minimizes the regret-ratio (the difference between the scores of top-1 in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq4-3363009.gif"/> </inline-formula> and top-1 in <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq5-3363009.gif"/> </inline-formula>, for any utility function). RMS is not shift invariant, causing inconsistency in results. Further, the regret-ratio is often a "made up" number and users may mistake its absolute value. Instead, users do understand the notion of rank. Therefore, in this paper, we consider finding a fixed-size set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq6-3363009.gif"/> </inline-formula> to minimize the maximum rank-regret (the rank of top-1 of <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq7-3363009.gif"/> </inline-formula> in the sorted list of <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq8-3363009.gif"/> </inline-formula>) over all possible utility functions, called the rank-regret minimization (RRM) problem, which is shift invariant. In 2D space, we design an exact algorithm 2DRRM for RRM. In HD space, we propose an approximate algorithm HDRRM with theoretical guarantees on rank-regret. It combines the ideas of space discretization and clustering. Extensive experiments verify the efficiency and effectiveness of our algorithms. In particular, HDRRM always has the best output quality in experiments.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3363009</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Automobiles ; Clustering ; Clustering algorithms ; Decision making ; Decision theory ; Invariants ; Logistics ; Minimization ; Multi-criteria decision-making ; Multiple criterion ; Optimization ; rank-regret ; regret-ratio ; skyline ; top-k query</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.3801-3816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3364-8471 ; 0000-0002-4119-0571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10423149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10423149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Xingxing</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><title>Efficient Algorithms for Rank-Regret Minimization</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Multi-criteria decision-making usually requires finding a small representative set from the database. A popular method, the regret minimization set (RMS) query, returns a size <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq1-3363009.gif"/> </inline-formula> subset <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq2-3363009.gif"/> </inline-formula> of the full dataset <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq3-3363009.gif"/> </inline-formula> that minimizes the regret-ratio (the difference between the scores of top-1 in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq4-3363009.gif"/> </inline-formula> and top-1 in <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq5-3363009.gif"/> </inline-formula>, for any utility function). RMS is not shift invariant, causing inconsistency in results. Further, the regret-ratio is often a "made up" number and users may mistake its absolute value. Instead, users do understand the notion of rank. Therefore, in this paper, we consider finding a fixed-size set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq6-3363009.gif"/> </inline-formula> to minimize the maximum rank-regret (the rank of top-1 of <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq7-3363009.gif"/> </inline-formula> in the sorted list of <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq8-3363009.gif"/> </inline-formula>) over all possible utility functions, called the rank-regret minimization (RRM) problem, which is shift invariant. In 2D space, we design an exact algorithm 2DRRM for RRM. In HD space, we propose an approximate algorithm HDRRM with theoretical guarantees on rank-regret. It combines the ideas of space discretization and clustering. Extensive experiments verify the efficiency and effectiveness of our algorithms. In particular, HDRRM always has the best output quality in experiments.]]></description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Automobiles</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Invariants</subject><subject>Logistics</subject><subject>Minimization</subject><subject>Multi-criteria decision-making</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>rank-regret</subject><subject>regret-ratio</subject><subject>skyline</subject><subject>top-k query</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOKcfQPBQ8Nyal6RJehxzU3EijHkOSfs6M7d2Jt1BP70d3UF48H-H3_89-BFyCzQDoMXD6vVxljHKRMa55JQWZ2QEea5TBgWc9zsVkAou1CW5inFDKdVKw4jArK596bHpksl23Qbffe5iUrchWdrmK13iOmCXvPnG7_yv7XzbXJOL2m4j3pxyTD7ms9X0OV28P71MJ4u0ZEJ2qZCVA4qsrCrrtLMF5zkqpSxzFaoaLQgmUTImXe4qKplGIZ1SWjspctB8TO6Hu_vQfh8wdmbTHkLTvzScKt0PK2RPwUCVoY0xYG32we9s-DFAzdGMOZoxRzPmZKbv3A0dj4j_eME4iIL_ASy9Xjs</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xiao, Xingxing</creator><creator>Li, Jianzhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3364-8471</orcidid><orcidid>https://orcid.org/0000-0002-4119-0571</orcidid></search><sort><creationdate>20240801</creationdate><title>Efficient Algorithms for Rank-Regret Minimization</title><author>Xiao, Xingxing ; Li, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-46db10e2cddab8ba9335e777a2bde7fea1426e6226b5bd0628e46b7788b645183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Automobiles</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Invariants</topic><topic>Logistics</topic><topic>Minimization</topic><topic>Multi-criteria decision-making</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>rank-regret</topic><topic>regret-ratio</topic><topic>skyline</topic><topic>top-k query</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xingxing</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Xingxing</au><au>Li, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Algorithms for Rank-Regret Minimization</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>3801</spage><epage>3816</epage><pages>3801-3816</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Multi-criteria decision-making usually requires finding a small representative set from the database. A popular method, the regret minimization set (RMS) query, returns a size <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq1-3363009.gif"/> </inline-formula> subset <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq2-3363009.gif"/> </inline-formula> of the full dataset <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq3-3363009.gif"/> </inline-formula> that minimizes the regret-ratio (the difference between the scores of top-1 in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq4-3363009.gif"/> </inline-formula> and top-1 in <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq5-3363009.gif"/> </inline-formula>, for any utility function). RMS is not shift invariant, causing inconsistency in results. Further, the regret-ratio is often a "made up" number and users may mistake its absolute value. Instead, users do understand the notion of rank. Therefore, in this paper, we consider finding a fixed-size set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq6-3363009.gif"/> </inline-formula> to minimize the maximum rank-regret (the rank of top-1 of <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq7-3363009.gif"/> </inline-formula> in the sorted list of <inline-formula><tex-math notation="LaTeX">D</tex-math> <mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="xiao-ieq8-3363009.gif"/> </inline-formula>) over all possible utility functions, called the rank-regret minimization (RRM) problem, which is shift invariant. In 2D space, we design an exact algorithm 2DRRM for RRM. In HD space, we propose an approximate algorithm HDRRM with theoretical guarantees on rank-regret. It combines the ideas of space discretization and clustering. Extensive experiments verify the efficiency and effectiveness of our algorithms. In particular, HDRRM always has the best output quality in experiments.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2024.3363009</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3364-8471</orcidid><orcidid>https://orcid.org/0000-0002-4119-0571</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.3801-3816
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2024_3363009
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Automobiles
Clustering
Clustering algorithms
Decision making
Decision theory
Invariants
Logistics
Minimization
Multi-criteria decision-making
Multiple criterion
Optimization
rank-regret
regret-ratio
skyline
top-k query
title Efficient Algorithms for Rank-Regret Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Algorithms%20for%20Rank-Regret%20Minimization&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Xiao,%20Xingxing&rft.date=2024-08-01&rft.volume=36&rft.issue=8&rft.spage=3801&rft.epage=3816&rft.pages=3801-3816&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3363009&rft_dat=%3Cproquest_RIE%3E3078078296%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078078296&rft_id=info:pmid/&rft_ieee_id=10423149&rfr_iscdi=true