DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning
Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiqui...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2024-04, Vol.36 (4), p.1502-1517 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1517 |
---|---|
container_issue | 4 |
container_start_page | 1502 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 36 |
creator | Wang, Haixin Jiang, Huiyu Sun, Jinan Zhang, Shikun Chen, Chong Hua, Xian-Sheng Luo, Xiao |
description | Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiquitous owing to erroneous annotations in real-world applications, which could seriously deteriorate the retrieval performance due to imprecise supervised guidance and severe memorization of noisy data. Here we propose a comprehensive method DIOR to handle the difficulties of learning to hash with label noise. DIOR performs partitions from two complementary levels, namely sample level and parameter level. On the one hand, DIOR divides the dataset into a labeled set with clean samples and an unlabeled set with noisy samples using an ensemble of perturbed views. Then we train the network in a contrastive semi-supervised manner by reconstructing label embeddings for both reliable supervision of clean data and sufficient exploration of noisy data. On the other hand, inspired by recent pruning techniques, DIOR divides the parameters in the hashing network into crucial parameters and non-crucial parameters, and then optimizes them separately to reduce the overfitting of noisy data. Extensive experiments on four popular benchmark datasets demonstrate the effectiveness of DIOR. |
doi_str_mv | 10.1109/TKDE.2023.3312109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2023_3312109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10239525</ieee_id><sourcerecordid>2947827102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-9e12d590b0fbc0e20d4e67915f73e5b5d6435a05b692ab8a76c736923c89bb8a3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILgIuJ6a38nEnbTVFgcrWnUZkpmMTakzbZIKvr0pLeLqnns551z4ALjEaIAxkjfzx9F4QBChA0oxSZcj0MOcFxnBEh8njRjOGGXiFJyFsEQIFaLAPfA6ms5ebmFptW9d-wljByc6LOCHiwtYamNX8KlzwcJ3p-Foq1fwWfvooutaqNsaDrs2eh2i-7Z_JefgpNGrYC8Osw_e7sfz4SQrZw_T4V2ZVYTlMZMWk5pLZFBjKmQJqpnNhcS8EdRyw-ucUa4RN7kk2hRa5JWgSdOqkCbttA-u971r3222NkS17La-TS8VkUwUROAEpA_w3lX5LgRvG7X27kv7H4WR2rFTO3Zqx04d2KXM1T7jrLX__IRKTjj9BeHHaLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947827102</pqid></control><display><type>article</type><title>DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Haixin ; Jiang, Huiyu ; Sun, Jinan ; Zhang, Shikun ; Chen, Chong ; Hua, Xian-Sheng ; Luo, Xiao</creator><creatorcontrib>Wang, Haixin ; Jiang, Huiyu ; Sun, Jinan ; Zhang, Shikun ; Chen, Chong ; Hua, Xian-Sheng ; Luo, Xiao</creatorcontrib><description>Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiquitous owing to erroneous annotations in real-world applications, which could seriously deteriorate the retrieval performance due to imprecise supervised guidance and severe memorization of noisy data. Here we propose a comprehensive method DIOR to handle the difficulties of learning to hash with label noise. DIOR performs partitions from two complementary levels, namely sample level and parameter level. On the one hand, DIOR divides the dataset into a labeled set with clean samples and an unlabeled set with noisy samples using an ensemble of perturbed views. Then we train the network in a contrastive semi-supervised manner by reconstructing label embeddings for both reliable supervision of clean data and sufficient exploration of noisy data. On the other hand, inspired by recent pruning techniques, DIOR divides the parameters in the hashing network into crucial parameters and non-crucial parameters, and then optimizes them separately to reduce the overfitting of noisy data. Extensive experiments on four popular benchmark datasets demonstrate the effectiveness of DIOR.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2023.3312109</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annotations ; Big Data ; Big data retrieval ; Codes ; contrastive learning ; Data models ; Data retrieval ; Datasets ; Labels ; Learning ; learning to hash ; learning with label noise ; Loss measurement ; Noise measurement ; Optimization ; Parameters ; Semantics ; Training</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-04, Vol.36 (4), p.1502-1517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8138-9262 ; 0000-0002-8576-2674 ; 0000-0002-8232-5049 ; 0000-0002-5714-0149 ; 0009-0008-9072-8244 ; 0000-0003-0213-9957 ; 0000-0002-7987-3714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10239525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10239525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Haixin</creatorcontrib><creatorcontrib>Jiang, Huiyu</creatorcontrib><creatorcontrib>Sun, Jinan</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Luo, Xiao</creatorcontrib><title>DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiquitous owing to erroneous annotations in real-world applications, which could seriously deteriorate the retrieval performance due to imprecise supervised guidance and severe memorization of noisy data. Here we propose a comprehensive method DIOR to handle the difficulties of learning to hash with label noise. DIOR performs partitions from two complementary levels, namely sample level and parameter level. On the one hand, DIOR divides the dataset into a labeled set with clean samples and an unlabeled set with noisy samples using an ensemble of perturbed views. Then we train the network in a contrastive semi-supervised manner by reconstructing label embeddings for both reliable supervision of clean data and sufficient exploration of noisy data. On the other hand, inspired by recent pruning techniques, DIOR divides the parameters in the hashing network into crucial parameters and non-crucial parameters, and then optimizes them separately to reduce the overfitting of noisy data. Extensive experiments on four popular benchmark datasets demonstrate the effectiveness of DIOR.</description><subject>Annotations</subject><subject>Big Data</subject><subject>Big data retrieval</subject><subject>Codes</subject><subject>contrastive learning</subject><subject>Data models</subject><subject>Data retrieval</subject><subject>Datasets</subject><subject>Labels</subject><subject>Learning</subject><subject>learning to hash</subject><subject>learning with label noise</subject><subject>Loss measurement</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Semantics</subject><subject>Training</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILgIuJ6a38nEnbTVFgcrWnUZkpmMTakzbZIKvr0pLeLqnns551z4ALjEaIAxkjfzx9F4QBChA0oxSZcj0MOcFxnBEh8njRjOGGXiFJyFsEQIFaLAPfA6ms5ebmFptW9d-wljByc6LOCHiwtYamNX8KlzwcJ3p-Foq1fwWfvooutaqNsaDrs2eh2i-7Z_JefgpNGrYC8Osw_e7sfz4SQrZw_T4V2ZVYTlMZMWk5pLZFBjKmQJqpnNhcS8EdRyw-ucUa4RN7kk2hRa5JWgSdOqkCbttA-u971r3222NkS17La-TS8VkUwUROAEpA_w3lX5LgRvG7X27kv7H4WR2rFTO3Zqx04d2KXM1T7jrLX__IRKTjj9BeHHaLU</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Haixin</creator><creator>Jiang, Huiyu</creator><creator>Sun, Jinan</creator><creator>Zhang, Shikun</creator><creator>Chen, Chong</creator><creator>Hua, Xian-Sheng</creator><creator>Luo, Xiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8138-9262</orcidid><orcidid>https://orcid.org/0000-0002-8576-2674</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-5714-0149</orcidid><orcidid>https://orcid.org/0009-0008-9072-8244</orcidid><orcidid>https://orcid.org/0000-0003-0213-9957</orcidid><orcidid>https://orcid.org/0000-0002-7987-3714</orcidid></search><sort><creationdate>20240401</creationdate><title>DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning</title><author>Wang, Haixin ; Jiang, Huiyu ; Sun, Jinan ; Zhang, Shikun ; Chen, Chong ; Hua, Xian-Sheng ; Luo, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-9e12d590b0fbc0e20d4e67915f73e5b5d6435a05b692ab8a76c736923c89bb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Big Data</topic><topic>Big data retrieval</topic><topic>Codes</topic><topic>contrastive learning</topic><topic>Data models</topic><topic>Data retrieval</topic><topic>Datasets</topic><topic>Labels</topic><topic>Learning</topic><topic>learning to hash</topic><topic>learning with label noise</topic><topic>Loss measurement</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Semantics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haixin</creatorcontrib><creatorcontrib>Jiang, Huiyu</creatorcontrib><creatorcontrib>Sun, Jinan</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Luo, Xiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Haixin</au><au>Jiang, Huiyu</au><au>Sun, Jinan</au><au>Zhang, Shikun</au><au>Chen, Chong</au><au>Hua, Xian-Sheng</au><au>Luo, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><spage>1502</spage><epage>1517</epage><pages>1502-1517</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Due to the excellent computing efficiency, learning to hash has acquired broad popularity for Big Data retrieval. Although supervised hashing methods have achieved promising performance recently, they presume that all training samples are appropriately annotated. Unfortunately, label noise is ubiquitous owing to erroneous annotations in real-world applications, which could seriously deteriorate the retrieval performance due to imprecise supervised guidance and severe memorization of noisy data. Here we propose a comprehensive method DIOR to handle the difficulties of learning to hash with label noise. DIOR performs partitions from two complementary levels, namely sample level and parameter level. On the one hand, DIOR divides the dataset into a labeled set with clean samples and an unlabeled set with noisy samples using an ensemble of perturbed views. Then we train the network in a contrastive semi-supervised manner by reconstructing label embeddings for both reliable supervision of clean data and sufficient exploration of noisy data. On the other hand, inspired by recent pruning techniques, DIOR divides the parameters in the hashing network into crucial parameters and non-crucial parameters, and then optimizes them separately to reduce the overfitting of noisy data. Extensive experiments on four popular benchmark datasets demonstrate the effectiveness of DIOR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2023.3312109</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8138-9262</orcidid><orcidid>https://orcid.org/0000-0002-8576-2674</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-5714-0149</orcidid><orcidid>https://orcid.org/0009-0008-9072-8244</orcidid><orcidid>https://orcid.org/0000-0003-0213-9957</orcidid><orcidid>https://orcid.org/0000-0002-7987-3714</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2024-04, Vol.36 (4), p.1502-1517 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2023_3312109 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Big Data Big data retrieval Codes contrastive learning Data models Data retrieval Datasets Labels Learning learning to hash learning with label noise Loss measurement Noise measurement Optimization Parameters Semantics Training |
title | DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIOR:%20Learning%20to%20Hash%20With%20Label%20Noise%20Via%20Dual%20Partition%20and%20Contrastive%20Learning&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wang,%20Haixin&rft.date=2024-04-01&rft.volume=36&rft.issue=4&rft.spage=1502&rft.epage=1517&rft.pages=1502-1517&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2023.3312109&rft_dat=%3Cproquest_RIE%3E2947827102%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947827102&rft_id=info:pmid/&rft_ieee_id=10239525&rfr_iscdi=true |