Towards More General Loss and Setting in Unsupervised Domain Adaptation
In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi-\alpha α divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-10, Vol.35 (10), p.10140-10150 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10150 |
---|---|
container_issue | 10 |
container_start_page | 10140 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Shui, Changjian Pu, Ruizhi Xu, Gezheng Wen, Jun Zhou, Fan Gagne, Christian Ling, Charles X. Wang, Boyu |
description | In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi-\alpha α divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic setting. Moreover, our theoretical results provide new insights into the assumptions for successful domain adaptation: the closeness between the conditional distributions of the domains and the Lipschitzness on the source domain. With these assumptions, we reveal the following: if their conditional generation distributions are close, the Lipschitzness property of the target domain can be transferred from the Lipschitzness on the source domain, without knowing the exact target distribution. Motivated by our analysis and assumptions, we further derive practical principles for deep domain adaptation: 1) Rényi-2 adversarial training for marginal distributions matching and 2) Lipschitz regularization for the classifier. Our experimental results on both synthetic and real-world datasets support our theoretical findings and the practical efficiency of the proposed principles. |
doi_str_mv | 10.1109/TKDE.2023.3266785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2023_3266785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10102307</ieee_id><sourcerecordid>2865092038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bc9788e4b951efbddc9962f340a6d53ff560fc89969eb830634c3f799c55707a3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgcInHucJKmSY7TNgZiiAPbOUpbB3Xa2pJ0IN6eTOPAyZb1_bb8EXLLYMIYmIf1y3wx4cDFRPCiUFqekRGTUmecGXaeeshZlotcXZKrGLcAoJVmI7Jcd98u1JG-dgHpElsMbkdXXYzUtTV9x2Fo2g_atHTTxkOP4auJWNN5t3dpNq1dP7ih6dprcuHdLuLNXx2TzeNiPXvKVm_L59l0lVXc5ENWVkZpjXlpJENf1nVlTMG9yMEVtRTeywJ8pdPQYKkFFCKvhFfGVFIqUE6Myf1pbx-6zwPGwW67Q2jTSct1IcFwEDpR7ERVIX0S0Ns-NHsXfiwDe_Rlj77s0Zf985Uyd6dMg4j_eJYgUOIX6uJl7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865092038</pqid></control><display><type>article</type><title>Towards More General Loss and Setting in Unsupervised Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Shui, Changjian ; Pu, Ruizhi ; Xu, Gezheng ; Wen, Jun ; Zhou, Fan ; Gagne, Christian ; Ling, Charles X. ; Wang, Boyu</creator><creatorcontrib>Shui, Changjian ; Pu, Ruizhi ; Xu, Gezheng ; Wen, Jun ; Zhou, Fan ; Gagne, Christian ; Ling, Charles X. ; Wang, Boyu</creatorcontrib><description><![CDATA[In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi-<inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math> <mml:mi>α</mml:mi> </mml:math> <inline-graphic xlink:href="pu-ieq1-3266785.gif"/> </inline-formula> divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic setting. Moreover, our theoretical results provide new insights into the assumptions for successful domain adaptation: the closeness between the conditional distributions of the domains and the Lipschitzness on the source domain. With these assumptions, we reveal the following: if their conditional generation distributions are close, the Lipschitzness property of the target domain can be transferred from the Lipschitzness on the source domain, without knowing the exact target distribution. Motivated by our analysis and assumptions, we further derive practical principles for deep domain adaptation: 1) Rényi-2 adversarial training for marginal distributions matching and 2) Lipschitz regularization for the classifier. Our experimental results on both synthetic and real-world datasets support our theoretical findings and the practical efficiency of the proposed principles.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2023.3266785</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Algorithms ; Computer science ; Divergence ; Domain adaptation ; Labeling ; Principles ; Regularization ; representation learning ; rényi divergence ; Supervised learning ; Task analysis ; Training ; Upper bound ; Urban areas</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-10, Vol.35 (10), p.10140-10150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-bc9788e4b951efbddc9962f340a6d53ff560fc89969eb830634c3f799c55707a3</citedby><cites>FETCH-LOGICAL-c294t-bc9788e4b951efbddc9962f340a6d53ff560fc89969eb830634c3f799c55707a3</cites><orcidid>0000-0003-3797-1348 ; 0000-0001-5067-2647 ; 0000-0001-6447-6559 ; 0000-0001-5983-5756 ; 0000-0002-6108-3589 ; 0000-0003-2507-1190 ; 0000-0003-1736-2641 ; 0000-0003-3697-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10102307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10102307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shui, Changjian</creatorcontrib><creatorcontrib>Pu, Ruizhi</creatorcontrib><creatorcontrib>Xu, Gezheng</creatorcontrib><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Gagne, Christian</creatorcontrib><creatorcontrib>Ling, Charles X.</creatorcontrib><creatorcontrib>Wang, Boyu</creatorcontrib><title>Towards More General Loss and Setting in Unsupervised Domain Adaptation</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi-<inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math> <mml:mi>α</mml:mi> </mml:math> <inline-graphic xlink:href="pu-ieq1-3266785.gif"/> </inline-formula> divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic setting. Moreover, our theoretical results provide new insights into the assumptions for successful domain adaptation: the closeness between the conditional distributions of the domains and the Lipschitzness on the source domain. With these assumptions, we reveal the following: if their conditional generation distributions are close, the Lipschitzness property of the target domain can be transferred from the Lipschitzness on the source domain, without knowing the exact target distribution. Motivated by our analysis and assumptions, we further derive practical principles for deep domain adaptation: 1) Rényi-2 adversarial training for marginal distributions matching and 2) Lipschitz regularization for the classifier. Our experimental results on both synthetic and real-world datasets support our theoretical findings and the practical efficiency of the proposed principles.]]></description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Computer science</subject><subject>Divergence</subject><subject>Domain adaptation</subject><subject>Labeling</subject><subject>Principles</subject><subject>Regularization</subject><subject>representation learning</subject><subject>rényi divergence</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Upper bound</subject><subject>Urban areas</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgcInHucJKmSY7TNgZiiAPbOUpbB3Xa2pJ0IN6eTOPAyZb1_bb8EXLLYMIYmIf1y3wx4cDFRPCiUFqekRGTUmecGXaeeshZlotcXZKrGLcAoJVmI7Jcd98u1JG-dgHpElsMbkdXXYzUtTV9x2Fo2g_atHTTxkOP4auJWNN5t3dpNq1dP7ih6dprcuHdLuLNXx2TzeNiPXvKVm_L59l0lVXc5ENWVkZpjXlpJENf1nVlTMG9yMEVtRTeywJ8pdPQYKkFFCKvhFfGVFIqUE6Myf1pbx-6zwPGwW67Q2jTSct1IcFwEDpR7ERVIX0S0Ns-NHsXfiwDe_Rlj77s0Zf985Uyd6dMg4j_eJYgUOIX6uJl7Q</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Shui, Changjian</creator><creator>Pu, Ruizhi</creator><creator>Xu, Gezheng</creator><creator>Wen, Jun</creator><creator>Zhou, Fan</creator><creator>Gagne, Christian</creator><creator>Ling, Charles X.</creator><creator>Wang, Boyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3797-1348</orcidid><orcidid>https://orcid.org/0000-0001-5067-2647</orcidid><orcidid>https://orcid.org/0000-0001-6447-6559</orcidid><orcidid>https://orcid.org/0000-0001-5983-5756</orcidid><orcidid>https://orcid.org/0000-0002-6108-3589</orcidid><orcidid>https://orcid.org/0000-0003-2507-1190</orcidid><orcidid>https://orcid.org/0000-0003-1736-2641</orcidid><orcidid>https://orcid.org/0000-0003-3697-4184</orcidid></search><sort><creationdate>20231001</creationdate><title>Towards More General Loss and Setting in Unsupervised Domain Adaptation</title><author>Shui, Changjian ; Pu, Ruizhi ; Xu, Gezheng ; Wen, Jun ; Zhou, Fan ; Gagne, Christian ; Ling, Charles X. ; Wang, Boyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bc9788e4b951efbddc9962f340a6d53ff560fc89969eb830634c3f799c55707a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Computer science</topic><topic>Divergence</topic><topic>Domain adaptation</topic><topic>Labeling</topic><topic>Principles</topic><topic>Regularization</topic><topic>representation learning</topic><topic>rényi divergence</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Upper bound</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shui, Changjian</creatorcontrib><creatorcontrib>Pu, Ruizhi</creatorcontrib><creatorcontrib>Xu, Gezheng</creatorcontrib><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Gagne, Christian</creatorcontrib><creatorcontrib>Ling, Charles X.</creatorcontrib><creatorcontrib>Wang, Boyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shui, Changjian</au><au>Pu, Ruizhi</au><au>Xu, Gezheng</au><au>Wen, Jun</au><au>Zhou, Fan</au><au>Gagne, Christian</au><au>Ling, Charles X.</au><au>Wang, Boyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards More General Loss and Setting in Unsupervised Domain Adaptation</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><spage>10140</spage><epage>10150</epage><pages>10140-10150</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi-<inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math> <mml:mi>α</mml:mi> </mml:math> <inline-graphic xlink:href="pu-ieq1-3266785.gif"/> </inline-formula> divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic setting. Moreover, our theoretical results provide new insights into the assumptions for successful domain adaptation: the closeness between the conditional distributions of the domains and the Lipschitzness on the source domain. With these assumptions, we reveal the following: if their conditional generation distributions are close, the Lipschitzness property of the target domain can be transferred from the Lipschitzness on the source domain, without knowing the exact target distribution. Motivated by our analysis and assumptions, we further derive practical principles for deep domain adaptation: 1) Rényi-2 adversarial training for marginal distributions matching and 2) Lipschitz regularization for the classifier. Our experimental results on both synthetic and real-world datasets support our theoretical findings and the practical efficiency of the proposed principles.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2023.3266785</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3797-1348</orcidid><orcidid>https://orcid.org/0000-0001-5067-2647</orcidid><orcidid>https://orcid.org/0000-0001-6447-6559</orcidid><orcidid>https://orcid.org/0000-0001-5983-5756</orcidid><orcidid>https://orcid.org/0000-0002-6108-3589</orcidid><orcidid>https://orcid.org/0000-0003-2507-1190</orcidid><orcidid>https://orcid.org/0000-0003-1736-2641</orcidid><orcidid>https://orcid.org/0000-0003-3697-4184</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-10, Vol.35 (10), p.10140-10150 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2023_3266785 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Algorithms Computer science Divergence Domain adaptation Labeling Principles Regularization representation learning rényi divergence Supervised learning Task analysis Training Upper bound Urban areas |
title | Towards More General Loss and Setting in Unsupervised Domain Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20More%20General%20Loss%20and%20Setting%20in%20Unsupervised%20Domain%20Adaptation&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Shui,%20Changjian&rft.date=2023-10-01&rft.volume=35&rft.issue=10&rft.spage=10140&rft.epage=10150&rft.pages=10140-10150&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2023.3266785&rft_dat=%3Cproquest_RIE%3E2865092038%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865092038&rft_id=info:pmid/&rft_ieee_id=10102307&rfr_iscdi=true |