Robust Label and Feature Space Co-Learning for Multi-Label Classification

Multi-label classification remains a challenging task for high-dimensional data samples and their labels both increase the complexity of training models. In this paper, we propose a Robust Label and Feature Space Co-Learning method, referred to as RLFSCL, for multi-label classification. Different fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-11, Vol.35 (11), p.1-14
Hauptverfasser: Liu, Zhifeng, Tang, Chuanjing, Abhadiomhen, Stanley Ebhohimhen, Shen, Xiang-Jun, Li, Yangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 11
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Liu, Zhifeng
Tang, Chuanjing
Abhadiomhen, Stanley Ebhohimhen
Shen, Xiang-Jun
Li, Yangyang
description Multi-label classification remains a challenging task for high-dimensional data samples and their labels both increase the complexity of training models. In this paper, we propose a Robust Label and Feature Space Co-Learning method, referred to as RLFSCL, for multi-label classification. Different from traditional multi-label classification methods which focus on feature space learning through regression directly between data samples and labels, our proposed method can further learn robust low rank label space from this traditional regression method. Therefore, our RLFSCL can learn better low rank feature and label representations simultaneously in original noisy and high dimensional spaces. Experimental comparison on five benchmark datasets, including Rcv1s5, Cal500, and Corel16k4 shows that the proposed RLFSCL algorithm outperforms state-of-the-art multi-label classification methods. The code of RLFSCL is made available on https://github.com/JingChuanTang/RLFSCL.
doi_str_mv 10.1109/TKDE.2022.3232114
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3232114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004974</ieee_id><sourcerecordid>2873585101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5a42fb2ca92a2fbbca3323fe4f59f6e09deea0328b23f98ebb7f0ae6afef915c3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXTJJum6NUVxcrgq7nMO1OpEtt16Q9-O_N0j14mpfhmQ8exq5BLACEudu8PDwupJByoaSSAPqEzSBN80SCgdOYhYZEK52ds4sQdkKIPMthxtbvfTWGgZdYUcux2_IV4TB64h97rIkXfVIS-q7pvrjrPX8d26FJJrpoMYTGNTUOTd9dsjOHbaCrY52zz9XjpnhOyrendXFfJrU0ekhS1NJVskYjMYaqRhU_dqRdatyShNkSoVAyr2LX5FRVmRNIS3TkDKS1mrPbae_e9z8jhcHu-tF38aSVeabSPAUBkYKJqn0fgidn9775Rv9rQdiDMXswZg_G7NFYnLmZZhoi-scLoU2m1R_7R2eL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585101</pqid></control><display><type>article</type><title>Robust Label and Feature Space Co-Learning for Multi-Label Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhifeng ; Tang, Chuanjing ; Abhadiomhen, Stanley Ebhohimhen ; Shen, Xiang-Jun ; Li, Yangyang</creator><creatorcontrib>Liu, Zhifeng ; Tang, Chuanjing ; Abhadiomhen, Stanley Ebhohimhen ; Shen, Xiang-Jun ; Li, Yangyang</creatorcontrib><description>Multi-label classification remains a challenging task for high-dimensional data samples and their labels both increase the complexity of training models. In this paper, we propose a Robust Label and Feature Space Co-Learning method, referred to as RLFSCL, for multi-label classification. Different from traditional multi-label classification methods which focus on feature space learning through regression directly between data samples and labels, our proposed method can further learn robust low rank label space from this traditional regression method. Therefore, our RLFSCL can learn better low rank feature and label representations simultaneously in original noisy and high dimensional spaces. Experimental comparison on five benchmark datasets, including Rcv1s5, Cal500, and Corel16k4 shows that the proposed RLFSCL algorithm outperforms state-of-the-art multi-label classification methods. The code of RLFSCL is made available on https://github.com/JingChuanTang/RLFSCL.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3232114</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Classification ; Classification algorithms ; Correlation ; Feature extraction ; feature space ; label space ; Labels ; Learning ; low-rank learning ; multi-label classification ; Noise measurement ; noise reduction ; Representation learning ; Robustness (mathematics) ; Training</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-5a42fb2ca92a2fbbca3323fe4f59f6e09deea0328b23f98ebb7f0ae6afef915c3</citedby><cites>FETCH-LOGICAL-c294t-5a42fb2ca92a2fbbca3323fe4f59f6e09deea0328b23f98ebb7f0ae6afef915c3</cites><orcidid>0000-0002-9805-233X ; 0000-0002-3359-8972 ; 0000-0002-4664-1140 ; 0000-0002-9509-1915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10004974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zhifeng</creatorcontrib><creatorcontrib>Tang, Chuanjing</creatorcontrib><creatorcontrib>Abhadiomhen, Stanley Ebhohimhen</creatorcontrib><creatorcontrib>Shen, Xiang-Jun</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><title>Robust Label and Feature Space Co-Learning for Multi-Label Classification</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Multi-label classification remains a challenging task for high-dimensional data samples and their labels both increase the complexity of training models. In this paper, we propose a Robust Label and Feature Space Co-Learning method, referred to as RLFSCL, for multi-label classification. Different from traditional multi-label classification methods which focus on feature space learning through regression directly between data samples and labels, our proposed method can further learn robust low rank label space from this traditional regression method. Therefore, our RLFSCL can learn better low rank feature and label representations simultaneously in original noisy and high dimensional spaces. Experimental comparison on five benchmark datasets, including Rcv1s5, Cal500, and Corel16k4 shows that the proposed RLFSCL algorithm outperforms state-of-the-art multi-label classification methods. The code of RLFSCL is made available on https://github.com/JingChuanTang/RLFSCL.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Correlation</subject><subject>Feature extraction</subject><subject>feature space</subject><subject>label space</subject><subject>Labels</subject><subject>Learning</subject><subject>low-rank learning</subject><subject>multi-label classification</subject><subject>Noise measurement</subject><subject>noise reduction</subject><subject>Representation learning</subject><subject>Robustness (mathematics)</subject><subject>Training</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXTJJum6NUVxcrgq7nMO1OpEtt16Q9-O_N0j14mpfhmQ8exq5BLACEudu8PDwupJByoaSSAPqEzSBN80SCgdOYhYZEK52ds4sQdkKIPMthxtbvfTWGgZdYUcux2_IV4TB64h97rIkXfVIS-q7pvrjrPX8d26FJJrpoMYTGNTUOTd9dsjOHbaCrY52zz9XjpnhOyrendXFfJrU0ekhS1NJVskYjMYaqRhU_dqRdatyShNkSoVAyr2LX5FRVmRNIS3TkDKS1mrPbae_e9z8jhcHu-tF38aSVeabSPAUBkYKJqn0fgidn9775Rv9rQdiDMXswZg_G7NFYnLmZZhoi-scLoU2m1R_7R2eL</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Zhifeng</creator><creator>Tang, Chuanjing</creator><creator>Abhadiomhen, Stanley Ebhohimhen</creator><creator>Shen, Xiang-Jun</creator><creator>Li, Yangyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9805-233X</orcidid><orcidid>https://orcid.org/0000-0002-3359-8972</orcidid><orcidid>https://orcid.org/0000-0002-4664-1140</orcidid><orcidid>https://orcid.org/0000-0002-9509-1915</orcidid></search><sort><creationdate>20231101</creationdate><title>Robust Label and Feature Space Co-Learning for Multi-Label Classification</title><author>Liu, Zhifeng ; Tang, Chuanjing ; Abhadiomhen, Stanley Ebhohimhen ; Shen, Xiang-Jun ; Li, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5a42fb2ca92a2fbbca3323fe4f59f6e09deea0328b23f98ebb7f0ae6afef915c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Correlation</topic><topic>Feature extraction</topic><topic>feature space</topic><topic>label space</topic><topic>Labels</topic><topic>Learning</topic><topic>low-rank learning</topic><topic>multi-label classification</topic><topic>Noise measurement</topic><topic>noise reduction</topic><topic>Representation learning</topic><topic>Robustness (mathematics)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhifeng</creatorcontrib><creatorcontrib>Tang, Chuanjing</creatorcontrib><creatorcontrib>Abhadiomhen, Stanley Ebhohimhen</creatorcontrib><creatorcontrib>Shen, Xiang-Jun</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhifeng</au><au>Tang, Chuanjing</au><au>Abhadiomhen, Stanley Ebhohimhen</au><au>Shen, Xiang-Jun</au><au>Li, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Label and Feature Space Co-Learning for Multi-Label Classification</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Multi-label classification remains a challenging task for high-dimensional data samples and their labels both increase the complexity of training models. In this paper, we propose a Robust Label and Feature Space Co-Learning method, referred to as RLFSCL, for multi-label classification. Different from traditional multi-label classification methods which focus on feature space learning through regression directly between data samples and labels, our proposed method can further learn robust low rank label space from this traditional regression method. Therefore, our RLFSCL can learn better low rank feature and label representations simultaneously in original noisy and high dimensional spaces. Experimental comparison on five benchmark datasets, including Rcv1s5, Cal500, and Corel16k4 shows that the proposed RLFSCL algorithm outperforms state-of-the-art multi-label classification methods. The code of RLFSCL is made available on https://github.com/JingChuanTang/RLFSCL.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3232114</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9805-233X</orcidid><orcidid>https://orcid.org/0000-0002-3359-8972</orcidid><orcidid>https://orcid.org/0000-0002-4664-1140</orcidid><orcidid>https://orcid.org/0000-0002-9509-1915</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3232114
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Classification
Classification algorithms
Correlation
Feature extraction
feature space
label space
Labels
Learning
low-rank learning
multi-label classification
Noise measurement
noise reduction
Representation learning
Robustness (mathematics)
Training
title Robust Label and Feature Space Co-Learning for Multi-Label Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Label%20and%20Feature%20Space%20Co-Learning%20for%20Multi-Label%20Classification&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liu,%20Zhifeng&rft.date=2023-11-01&rft.volume=35&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3232114&rft_dat=%3Cproquest_RIE%3E2873585101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873585101&rft_id=info:pmid/&rft_ieee_id=10004974&rfr_iscdi=true