Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs

Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-09, Vol.35 (9), p.1-14
Hauptverfasser: Jin, Ming, Zheng, Yu, Li, Yuan-Fang, Chen, Siheng, Yang, Bin, Pan, Shirui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 9
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Jin, Ming
Zheng, Yu
Li, Yuan-Fang
Chen, Siheng
Yang, Bin
Pan, Shirui
description Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii). High complexity : Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii). Reliance on graph priors : Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M ultivariate T ime series with dynamic G raph neural O rdinary D ifferential E quations ( MTGODE ). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets
doi_str_mv 10.1109/TKDE.2022.3221989
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3221989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950330</ieee_id><sourcerecordid>2847965087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bc7bab040b5fee497ce96725ade0add8dcddeb9996dfa3f433f94f1f0c947c713</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7nI8uzRHtC8RgB8Y5SlOHZdrWkbSg_Xs6DXGyLT2vLT-E3DIYMAb6Yfkyngw4cD4QnDNd6DPSY3leZN3AzrseJMukkOqSXKW0BoBCFaxHRq_tpgnfNgbbIF2GLdJ3jAETndYRnU1N2H3Sn9Cs6Piws9vg6Cza_Yq-YRvthi7Gk3RNLrzdJLz5q33yMZ0sR0_ZfDF7Hj3OM8e1aLLSqdKWIKHMPaLUyqEeKp7bCsFWVVG5qsJSaz2svBVeCuG19MyD01I5xUSf3J_27mP91WJqzLpu4647aXghlR7m3VMdxU6Ui3VKEb3Zx7C18WAYmKMrc3Rljq7Mn6suc3fKBET857XOQQgQv2VxZZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965087</pqid></control><display><type>article</type><title>Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Ming ; Zheng, Yu ; Li, Yuan-Fang ; Chen, Siheng ; Yang, Bin ; Pan, Shirui</creator><creatorcontrib>Jin, Ming ; Zheng, Yu ; Li, Yuan-Fang ; Chen, Siheng ; Yang, Bin ; Pan, Shirui</creatorcontrib><description>Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii). High complexity : Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii). Reliance on graph priors : Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M ultivariate T ime series with dynamic G raph neural O rdinary D ifferential E quations ( MTGODE ). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3221989</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Electronic mail ; Energy consumption ; Forecasting ; graph neural networks ; Mathematical models ; Message passing ; Multivariate analysis ; multivariate time series forecasting ; neural ordinary differential equations ; Predictive models ; Time series ; Time series analysis ; Topology ; Trajectory</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-09, Vol.35 (9), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bc7bab040b5fee497ce96725ade0add8dcddeb9996dfa3f433f94f1f0c947c713</citedby><cites>FETCH-LOGICAL-c293t-bc7bab040b5fee497ce96725ade0add8dcddeb9996dfa3f433f94f1f0c947c713</cites><orcidid>0000-0002-1658-1079 ; 0000-0002-9144-0583 ; 0000-0003-4651-2821 ; 0000-0003-0794-527X ; 0000-0002-6833-4811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Ming</creatorcontrib><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Yuan-Fang</creatorcontrib><creatorcontrib>Chen, Siheng</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Pan, Shirui</creatorcontrib><title>Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii). High complexity : Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii). Reliance on graph priors : Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M ultivariate T ime series with dynamic G raph neural O rdinary D ifferential E quations ( MTGODE ). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets</description><subject>Computational modeling</subject><subject>Electronic mail</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>graph neural networks</subject><subject>Mathematical models</subject><subject>Message passing</subject><subject>Multivariate analysis</subject><subject>multivariate time series forecasting</subject><subject>neural ordinary differential equations</subject><subject>Predictive models</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Topology</subject><subject>Trajectory</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7nI8uzRHtC8RgB8Y5SlOHZdrWkbSg_Xs6DXGyLT2vLT-E3DIYMAb6Yfkyngw4cD4QnDNd6DPSY3leZN3AzrseJMukkOqSXKW0BoBCFaxHRq_tpgnfNgbbIF2GLdJ3jAETndYRnU1N2H3Sn9Cs6Piws9vg6Cza_Yq-YRvthi7Gk3RNLrzdJLz5q33yMZ0sR0_ZfDF7Hj3OM8e1aLLSqdKWIKHMPaLUyqEeKp7bCsFWVVG5qsJSaz2svBVeCuG19MyD01I5xUSf3J_27mP91WJqzLpu4647aXghlR7m3VMdxU6Ui3VKEb3Zx7C18WAYmKMrc3Rljq7Mn6suc3fKBET857XOQQgQv2VxZZs</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Jin, Ming</creator><creator>Zheng, Yu</creator><creator>Li, Yuan-Fang</creator><creator>Chen, Siheng</creator><creator>Yang, Bin</creator><creator>Pan, Shirui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1658-1079</orcidid><orcidid>https://orcid.org/0000-0002-9144-0583</orcidid><orcidid>https://orcid.org/0000-0003-4651-2821</orcidid><orcidid>https://orcid.org/0000-0003-0794-527X</orcidid><orcidid>https://orcid.org/0000-0002-6833-4811</orcidid></search><sort><creationdate>20230901</creationdate><title>Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs</title><author>Jin, Ming ; Zheng, Yu ; Li, Yuan-Fang ; Chen, Siheng ; Yang, Bin ; Pan, Shirui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bc7bab040b5fee497ce96725ade0add8dcddeb9996dfa3f433f94f1f0c947c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Electronic mail</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>graph neural networks</topic><topic>Mathematical models</topic><topic>Message passing</topic><topic>Multivariate analysis</topic><topic>multivariate time series forecasting</topic><topic>neural ordinary differential equations</topic><topic>Predictive models</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Topology</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Ming</creatorcontrib><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Yuan-Fang</creatorcontrib><creatorcontrib>Chen, Siheng</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Pan, Shirui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Ming</au><au>Zheng, Yu</au><au>Li, Yuan-Fang</au><au>Chen, Siheng</au><au>Yang, Bin</au><au>Pan, Shirui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii). High complexity : Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii). Reliance on graph priors : Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M ultivariate T ime series with dynamic G raph neural O rdinary D ifferential E quations ( MTGODE ). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3221989</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1658-1079</orcidid><orcidid>https://orcid.org/0000-0002-9144-0583</orcidid><orcidid>https://orcid.org/0000-0003-4651-2821</orcidid><orcidid>https://orcid.org/0000-0003-0794-527X</orcidid><orcidid>https://orcid.org/0000-0002-6833-4811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-09, Vol.35 (9), p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3221989
source IEEE Electronic Library (IEL)
subjects Computational modeling
Electronic mail
Energy consumption
Forecasting
graph neural networks
Mathematical models
Message passing
Multivariate analysis
multivariate time series forecasting
neural ordinary differential equations
Predictive models
Time series
Time series analysis
Topology
Trajectory
title Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Time%20Series%20Forecasting%20with%20Dynamic%20Graph%20Neural%20ODEs&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Jin,%20Ming&rft.date=2023-09-01&rft.volume=35&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3221989&rft_dat=%3Cproquest_RIE%3E2847965087%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847965087&rft_id=info:pmid/&rft_ieee_id=9950330&rfr_iscdi=true