An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems

Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-08, Vol.35 (8), p.7736-7752
Hauptverfasser: Wu, Gang, Peng, Keke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7752
container_issue 8
container_start_page 7736
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Wu, Gang
Peng, Keke
description Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.
doi_str_mv 10.1109/TKDE.2022.3197920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3197920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9854158</ieee_id><sourcerecordid>2834306074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRejiYj-AONLE5-HvW23tY-IoEQIBDA-znbcwXRbZzeM_HtHID7d8_Cdc5PP826B9gCoeli9Pg17jDLW46AixeiZ14EgkD4DBedtpgJ8wUV06V3V9SelVEYSOt5HvyTj8gddjf7IIZLH3CZf_nK2IFNstnZN3rNmSxa6XNsi35OlLqo8KzcktY6ssKis0zmZ7vImq3L8JXO9wRb-InNnTY5Ffe1dpDqv8eZ0u97baLgavPiT2fN40J_4CRNB4zMdKk3TNAFDA6MDkSDloQ4RuVGM8ZRxI4GxVEUCGAIaKcw6ZdrIECKleNe7P-5Wzn7vsG7iT7tzZfsyZpILTkMaiZaCI5U4W9cO07hyWaHdPgYaH0TGB5HxQWR8Etl27o6dDBH_eSUDAYHkf_1Obms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834306074</pqid></control><display><type>article</type><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Gang ; Peng, Keke</creator><creatorcontrib>Wu, Gang ; Peng, Keke</creatorcontrib><description>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3197920</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; centrality ; Complex networks ; Damping ; inverse-free block-SOR method ; Linear systems ; Multiplex network ; multiplex PageRank ; Multiplexing ; Network analysis ; Nonhomogeneous media ; Sampling ; Search algorithms ; Social networking (online) ; Sparse matrices ; temporal multiplex PageRank ; temporal network</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.7736-7752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</cites><orcidid>0000-0002-9025-3102 ; 0000-0002-4936-437X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9854158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9854158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Peng, Keke</creatorcontrib><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</description><subject>Algorithms</subject><subject>centrality</subject><subject>Complex networks</subject><subject>Damping</subject><subject>inverse-free block-SOR method</subject><subject>Linear systems</subject><subject>Multiplex network</subject><subject>multiplex PageRank</subject><subject>Multiplexing</subject><subject>Network analysis</subject><subject>Nonhomogeneous media</subject><subject>Sampling</subject><subject>Search algorithms</subject><subject>Social networking (online)</subject><subject>Sparse matrices</subject><subject>temporal multiplex PageRank</subject><subject>temporal network</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRejiYj-AONLE5-HvW23tY-IoEQIBDA-znbcwXRbZzeM_HtHID7d8_Cdc5PP826B9gCoeli9Pg17jDLW46AixeiZ14EgkD4DBedtpgJ8wUV06V3V9SelVEYSOt5HvyTj8gddjf7IIZLH3CZf_nK2IFNstnZN3rNmSxa6XNsi35OlLqo8KzcktY6ssKis0zmZ7vImq3L8JXO9wRb-InNnTY5Ffe1dpDqv8eZ0u97baLgavPiT2fN40J_4CRNB4zMdKk3TNAFDA6MDkSDloQ4RuVGM8ZRxI4GxVEUCGAIaKcw6ZdrIECKleNe7P-5Wzn7vsG7iT7tzZfsyZpILTkMaiZaCI5U4W9cO07hyWaHdPgYaH0TGB5HxQWR8Etl27o6dDBH_eSUDAYHkf_1Obms</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wu, Gang</creator><creator>Peng, Keke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9025-3102</orcidid><orcidid>https://orcid.org/0000-0002-4936-437X</orcidid></search><sort><creationdate>20230801</creationdate><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><author>Wu, Gang ; Peng, Keke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>centrality</topic><topic>Complex networks</topic><topic>Damping</topic><topic>inverse-free block-SOR method</topic><topic>Linear systems</topic><topic>Multiplex network</topic><topic>multiplex PageRank</topic><topic>Multiplexing</topic><topic>Network analysis</topic><topic>Nonhomogeneous media</topic><topic>Sampling</topic><topic>Search algorithms</topic><topic>Social networking (online)</topic><topic>Sparse matrices</topic><topic>temporal multiplex PageRank</topic><topic>temporal network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Peng, Keke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Gang</au><au>Peng, Keke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>8</issue><spage>7736</spage><epage>7752</epage><pages>7736-7752</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3197920</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9025-3102</orcidid><orcidid>https://orcid.org/0000-0002-4936-437X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.7736-7752
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3197920
source IEEE Electronic Library (IEL)
subjects Algorithms
centrality
Complex networks
Damping
inverse-free block-SOR method
Linear systems
Multiplex network
multiplex PageRank
Multiplexing
Network analysis
Nonhomogeneous media
Sampling
Search algorithms
Social networking (online)
Sparse matrices
temporal multiplex PageRank
temporal network
title An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inverse-Free%20Block-SOR%20Method%20With%20Randomly%20Sampling%20for%20Temporal%20Multiplex%20PageRank%20Problems&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Gang&rft.date=2023-08-01&rft.volume=35&rft.issue=8&rft.spage=7736&rft.epage=7752&rft.pages=7736-7752&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3197920&rft_dat=%3Cproquest_RIE%3E2834306074%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834306074&rft_id=info:pmid/&rft_ieee_id=9854158&rfr_iscdi=true