An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems
Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-08, Vol.35 (8), p.7736-7752 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7752 |
---|---|
container_issue | 8 |
container_start_page | 7736 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Wu, Gang Peng, Keke |
description | Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies. |
doi_str_mv | 10.1109/TKDE.2022.3197920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3197920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9854158</ieee_id><sourcerecordid>2834306074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRejiYj-AONLE5-HvW23tY-IoEQIBDA-znbcwXRbZzeM_HtHID7d8_Cdc5PP826B9gCoeli9Pg17jDLW46AixeiZ14EgkD4DBedtpgJ8wUV06V3V9SelVEYSOt5HvyTj8gddjf7IIZLH3CZf_nK2IFNstnZN3rNmSxa6XNsi35OlLqo8KzcktY6ssKis0zmZ7vImq3L8JXO9wRb-InNnTY5Ffe1dpDqv8eZ0u97baLgavPiT2fN40J_4CRNB4zMdKk3TNAFDA6MDkSDloQ4RuVGM8ZRxI4GxVEUCGAIaKcw6ZdrIECKleNe7P-5Wzn7vsG7iT7tzZfsyZpILTkMaiZaCI5U4W9cO07hyWaHdPgYaH0TGB5HxQWR8Etl27o6dDBH_eSUDAYHkf_1Obms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834306074</pqid></control><display><type>article</type><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Gang ; Peng, Keke</creator><creatorcontrib>Wu, Gang ; Peng, Keke</creatorcontrib><description>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3197920</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; centrality ; Complex networks ; Damping ; inverse-free block-SOR method ; Linear systems ; Multiplex network ; multiplex PageRank ; Multiplexing ; Network analysis ; Nonhomogeneous media ; Sampling ; Search algorithms ; Social networking (online) ; Sparse matrices ; temporal multiplex PageRank ; temporal network</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.7736-7752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</cites><orcidid>0000-0002-9025-3102 ; 0000-0002-4936-437X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9854158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9854158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Peng, Keke</creatorcontrib><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</description><subject>Algorithms</subject><subject>centrality</subject><subject>Complex networks</subject><subject>Damping</subject><subject>inverse-free block-SOR method</subject><subject>Linear systems</subject><subject>Multiplex network</subject><subject>multiplex PageRank</subject><subject>Multiplexing</subject><subject>Network analysis</subject><subject>Nonhomogeneous media</subject><subject>Sampling</subject><subject>Search algorithms</subject><subject>Social networking (online)</subject><subject>Sparse matrices</subject><subject>temporal multiplex PageRank</subject><subject>temporal network</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRejiYj-AONLE5-HvW23tY-IoEQIBDA-znbcwXRbZzeM_HtHID7d8_Cdc5PP826B9gCoeli9Pg17jDLW46AixeiZ14EgkD4DBedtpgJ8wUV06V3V9SelVEYSOt5HvyTj8gddjf7IIZLH3CZf_nK2IFNstnZN3rNmSxa6XNsi35OlLqo8KzcktY6ssKis0zmZ7vImq3L8JXO9wRb-InNnTY5Ffe1dpDqv8eZ0u97baLgavPiT2fN40J_4CRNB4zMdKk3TNAFDA6MDkSDloQ4RuVGM8ZRxI4GxVEUCGAIaKcw6ZdrIECKleNe7P-5Wzn7vsG7iT7tzZfsyZpILTkMaiZaCI5U4W9cO07hyWaHdPgYaH0TGB5HxQWR8Etl27o6dDBH_eSUDAYHkf_1Obms</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wu, Gang</creator><creator>Peng, Keke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9025-3102</orcidid><orcidid>https://orcid.org/0000-0002-4936-437X</orcidid></search><sort><creationdate>20230801</creationdate><title>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</title><author>Wu, Gang ; Peng, Keke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2a69a0ffc1b05ba54ce036a6ee3b9223f23b8122f97412e1eb84bdf2ab8617993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>centrality</topic><topic>Complex networks</topic><topic>Damping</topic><topic>inverse-free block-SOR method</topic><topic>Linear systems</topic><topic>Multiplex network</topic><topic>multiplex PageRank</topic><topic>Multiplexing</topic><topic>Network analysis</topic><topic>Nonhomogeneous media</topic><topic>Sampling</topic><topic>Search algorithms</topic><topic>Social networking (online)</topic><topic>Sparse matrices</topic><topic>temporal multiplex PageRank</topic><topic>temporal network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Peng, Keke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Gang</au><au>Peng, Keke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>8</issue><spage>7736</spage><epage>7752</epage><pages>7736-7752</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Ranking nodes in a multiplex network is one of the most pressing and challenging tasks in network analysis. Generalizing centrality measures to multiplex networks is an active area of research. The Multiplex PageRank model is an extension of Google's PageRank, which introduces a new centrality measure to extend the usual PageRank to multiplex networks. In this work, we focus on the Multiplex PageRank problem. First, based on the special structure of the Multiplex PageRank problem, we propose an inverse-free block-SOR method. Second, with the help of randomly sampling, we propose a new strategy for estimating the optimal relaxation parameter. Specifically, the multiplex network is frequently updated in real world applications, and we have to deal with temporal Multiplex PageRank problems including the incremental and the decremental Multiplex PageRank problems. To the best of our knowledge, however, there are few efficient algorithms for solving these type of problems. To fill-in this gap, the third contribution of this work is to propose both incremental and decremental algorithms for solving the temporal Multiplex PageRank problems. Comprehensive numerical experiments are performed to illustrate the numerical behavior of the proposed algorithms, and show the effectiveness of our new strategies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3197920</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9025-3102</orcidid><orcidid>https://orcid.org/0000-0002-4936-437X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.7736-7752 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2022_3197920 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms centrality Complex networks Damping inverse-free block-SOR method Linear systems Multiplex network multiplex PageRank Multiplexing Network analysis Nonhomogeneous media Sampling Search algorithms Social networking (online) Sparse matrices temporal multiplex PageRank temporal network |
title | An Inverse-Free Block-SOR Method With Randomly Sampling for Temporal Multiplex PageRank Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inverse-Free%20Block-SOR%20Method%20With%20Randomly%20Sampling%20for%20Temporal%20Multiplex%20PageRank%20Problems&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Gang&rft.date=2023-08-01&rft.volume=35&rft.issue=8&rft.spage=7736&rft.epage=7752&rft.pages=7736-7752&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3197920&rft_dat=%3Cproquest_RIE%3E2834306074%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834306074&rft_id=info:pmid/&rft_ieee_id=9854158&rfr_iscdi=true |