Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.6866-6886
Hauptverfasser: Yao, Jiangchao, Zhang, Shengyu, Yao, Yang, Wang, Feng, Ma, Jianxin, Zhang, Jianwei, Chu, Yunfei, Ji, Luo, Jia, Kunyang, Shen, Tao, Wu, Anpeng, Zhang, Fengda, Tan, Ziqi, Kuang, Kun, Wu, Chao, Wu, Fei, Zhou, Jingren, Yang, Hongxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6886
container_issue 7
container_start_page 6866
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Yao, Jiangchao
Zhang, Shengyu
Yao, Yang
Wang, Feng
Ma, Jianxin
Zhang, Jianwei
Chu, Yunfei
Ji, Luo
Jia, Kunyang
Shen, Tao
Wu, Anpeng
Zhang, Fengda
Tan, Ziqi
Kuang, Kun
Wu, Chao
Wu, Fei
Zhou, Jingren
Yang, Hongxia
description Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.
doi_str_mv 10.1109/TKDE.2022.3178211
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3178211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9783185</ieee_id><sourcerecordid>2823193636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-37ce2833ba4cc548ec5323dca30e0f3de3296857c65549553500a660f4e12e213</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHgJeE7d2ckmG28lVlssKFjPy3Yz0ZQ0W3ebQv31plZkDjM83psHH2PXwEcAPL9bPD9MRoILMULIlAA4YQOQUsUCcjjtb55AnGCSnbOLEFacc5UpGLDppPyguGhcV0avrjG-_jbb2rWRacuocE1jls7_KvfRuBfWG0-f1IZ6R9Fb53e0jyrno_Hskp1Vpgl09beH7P1xsiim8fzlaVaM57EVOW5jzCwJhbg0ibUyUWQlCiytQU68wpJQ5KmSmU2lTHIpUXJu0pRXCYEgAThkt8e_G---OgpbvXKdb_tKLZRAyDHtZ8jg6LLeheCp0htfr43fa-D6AEwfgOkDMP0HrM_cHDM1Ef3780whKIk_FvZk4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193636</pqid></control><display><type>article</type><title>Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Jiangchao ; Zhang, Shengyu ; Yao, Yang ; Wang, Feng ; Ma, Jianxin ; Zhang, Jianwei ; Chu, Yunfei ; Ji, Luo ; Jia, Kunyang ; Shen, Tao ; Wu, Anpeng ; Zhang, Fengda ; Tan, Ziqi ; Kuang, Kun ; Wu, Chao ; Wu, Fei ; Zhou, Jingren ; Yang, Hongxia</creator><creatorcontrib>Yao, Jiangchao ; Zhang, Shengyu ; Yao, Yang ; Wang, Feng ; Ma, Jianxin ; Zhang, Jianwei ; Chu, Yunfei ; Ji, Luo ; Jia, Kunyang ; Shen, Tao ; Wu, Anpeng ; Zhang, Fengda ; Tan, Ziqi ; Kuang, Kun ; Wu, Chao ; Wu, Fei ; Zhou, Jingren ; Yang, Hongxia</creatorcontrib><description>Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3178211</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Cloud AI ; Cloud computing ; Collaboration ; Computational modeling ; Deep learning ; edge AI ; Edge computing ; edge-cloud collaboration ; Graph neural networks ; Hardware ; Internet of Things ; Machine learning ; R&amp;D ; Research &amp; development</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.6866-6886</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-37ce2833ba4cc548ec5323dca30e0f3de3296857c65549553500a660f4e12e213</citedby><cites>FETCH-LOGICAL-c293t-37ce2833ba4cc548ec5323dca30e0f3de3296857c65549553500a660f4e12e213</cites><orcidid>0000-0003-3898-7122 ; 0000-0003-0885-6869 ; 0000-0002-0030-8289 ; 0000-0002-0580-9728 ; 0000-0001-7024-9790 ; 0000-0002-2484-5345 ; 0000-0001-6115-5194 ; 0000-0003-2139-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9783185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9783185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yao, Jiangchao</creatorcontrib><creatorcontrib>Zhang, Shengyu</creatorcontrib><creatorcontrib>Yao, Yang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Chu, Yunfei</creatorcontrib><creatorcontrib>Ji, Luo</creatorcontrib><creatorcontrib>Jia, Kunyang</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Zhang, Fengda</creatorcontrib><creatorcontrib>Tan, Ziqi</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Zhou, Jingren</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><title>Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cloud AI</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>edge AI</subject><subject>Edge computing</subject><subject>edge-cloud collaboration</subject><subject>Graph neural networks</subject><subject>Hardware</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHgJeE7d2ckmG28lVlssKFjPy3Yz0ZQ0W3ebQv31plZkDjM83psHH2PXwEcAPL9bPD9MRoILMULIlAA4YQOQUsUCcjjtb55AnGCSnbOLEFacc5UpGLDppPyguGhcV0avrjG-_jbb2rWRacuocE1jls7_KvfRuBfWG0-f1IZ6R9Fb53e0jyrno_Hskp1Vpgl09beH7P1xsiim8fzlaVaM57EVOW5jzCwJhbg0ibUyUWQlCiytQU68wpJQ5KmSmU2lTHIpUXJu0pRXCYEgAThkt8e_G---OgpbvXKdb_tKLZRAyDHtZ8jg6LLeheCp0htfr43fa-D6AEwfgOkDMP0HrM_cHDM1Ef3780whKIk_FvZk4g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Yao, Jiangchao</creator><creator>Zhang, Shengyu</creator><creator>Yao, Yang</creator><creator>Wang, Feng</creator><creator>Ma, Jianxin</creator><creator>Zhang, Jianwei</creator><creator>Chu, Yunfei</creator><creator>Ji, Luo</creator><creator>Jia, Kunyang</creator><creator>Shen, Tao</creator><creator>Wu, Anpeng</creator><creator>Zhang, Fengda</creator><creator>Tan, Ziqi</creator><creator>Kuang, Kun</creator><creator>Wu, Chao</creator><creator>Wu, Fei</creator><creator>Zhou, Jingren</creator><creator>Yang, Hongxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-0885-6869</orcidid><orcidid>https://orcid.org/0000-0002-0030-8289</orcidid><orcidid>https://orcid.org/0000-0002-0580-9728</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0002-2484-5345</orcidid><orcidid>https://orcid.org/0000-0001-6115-5194</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid></search><sort><creationdate>20230701</creationdate><title>Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI</title><author>Yao, Jiangchao ; Zhang, Shengyu ; Yao, Yang ; Wang, Feng ; Ma, Jianxin ; Zhang, Jianwei ; Chu, Yunfei ; Ji, Luo ; Jia, Kunyang ; Shen, Tao ; Wu, Anpeng ; Zhang, Fengda ; Tan, Ziqi ; Kuang, Kun ; Wu, Chao ; Wu, Fei ; Zhou, Jingren ; Yang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-37ce2833ba4cc548ec5323dca30e0f3de3296857c65549553500a660f4e12e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cloud AI</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>edge AI</topic><topic>Edge computing</topic><topic>edge-cloud collaboration</topic><topic>Graph neural networks</topic><topic>Hardware</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jiangchao</creatorcontrib><creatorcontrib>Zhang, Shengyu</creatorcontrib><creatorcontrib>Yao, Yang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Ma, Jianxin</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Chu, Yunfei</creatorcontrib><creatorcontrib>Ji, Luo</creatorcontrib><creatorcontrib>Jia, Kunyang</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Zhang, Fengda</creatorcontrib><creatorcontrib>Tan, Ziqi</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Zhou, Jingren</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Jiangchao</au><au>Zhang, Shengyu</au><au>Yao, Yang</au><au>Wang, Feng</au><au>Ma, Jianxin</au><au>Zhang, Jianwei</au><au>Chu, Yunfei</au><au>Ji, Luo</au><au>Jia, Kunyang</au><au>Shen, Tao</au><au>Wu, Anpeng</au><au>Zhang, Fengda</au><au>Tan, Ziqi</au><au>Kuang, Kun</au><au>Wu, Chao</au><au>Wu, Fei</au><au>Zhou, Jingren</au><au>Yang, Hongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>6866</spage><epage>6886</epage><pages>6866-6886</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3178211</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-0885-6869</orcidid><orcidid>https://orcid.org/0000-0002-0030-8289</orcidid><orcidid>https://orcid.org/0000-0002-0580-9728</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0002-2484-5345</orcidid><orcidid>https://orcid.org/0000-0001-6115-5194</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.6866-6886
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3178211
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Cloud AI
Cloud computing
Collaboration
Computational modeling
Deep learning
edge AI
Edge computing
edge-cloud collaboration
Graph neural networks
Hardware
Internet of Things
Machine learning
R&D
Research & development
title Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-Cloud%20Polarization%20and%20Collaboration:%20A%20Comprehensive%20Survey%20for%20AI&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Yao,%20Jiangchao&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=6866&rft.epage=6886&rft.pages=6866-6886&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3178211&rft_dat=%3Cproquest_RIE%3E2823193636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193636&rft_id=info:pmid/&rft_ieee_id=9783185&rfr_iscdi=true