Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering
The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for mu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7457-7469 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7469 |
---|---|
container_issue | 7 |
container_start_page | 7457 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Tang, Kewei Xu, Kaiqiang Jiang, Wei Su, Zhixun Sun, Xiyan Luo, Xiaonan |
description | The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method. |
doi_str_mv | 10.1109/TKDE.2022.3178145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3178145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9782561</ieee_id><sourcerecordid>2823192844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwAYiLJc4pXttJnGMpLSCKQGrharnJGlKlSbAdIf4eV0Wcdg9vZmeHkEtgEwBW3Kyf7uYTzjifCMgVyPSIjCBNVcKhgOO4MwmJFDI_JWfebxljKmIjolfYYBnq9oOGT6S36AN9NS7Qhet29HloQt03SJemb0xZm5ZOh9BhW3YVOk9t5w5M8l7jN10NG9-bEumsGXxAF13PyYk1jceLvzkmb4v5evaQLF_uH2fTZVLyQoQEhUh5ZTLOMmlUjJxVMo8J1SatlLWVkFIaZHkqbY7SKqVAgElFjmCNLCoxJtcH3951X0P8Qm-7wbXxpOaKCyi4kjJScKBK13nv0Ore1TvjfjQwve9R73vU-x71X49Rc3XQ1Ij4zxe54mkG4hfS6m4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823192844</pqid></control><display><type>article</type><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</creator><creatorcontrib>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</creatorcontrib><description>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3178145</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; autoencoders ; Clustering ; Clustering methods ; Deep learning ; Faces ; Feature extraction ; Laplace equations ; Laplacian operator ; Multi-view ; Neural networks ; novel fusion strategy ; Regularization ; subspace clustering ; Subspaces ; Sun</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7457-7469</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</citedby><cites>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</cites><orcidid>0000-0003-0820-588X ; 0000-0001-6124-6328 ; 0000-0002-6093-8266 ; 0000-0003-4846-2231 ; 0000-0002-0751-5045 ; 0000-0002-4227-2499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9782561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9782561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Kewei</creatorcontrib><creatorcontrib>Xu, Kaiqiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Luo, Xiaonan</creatorcontrib><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</description><subject>Affinity</subject><subject>autoencoders</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Deep learning</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Laplace equations</subject><subject>Laplacian operator</subject><subject>Multi-view</subject><subject>Neural networks</subject><subject>novel fusion strategy</subject><subject>Regularization</subject><subject>subspace clustering</subject><subject>Subspaces</subject><subject>Sun</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwAYiLJc4pXttJnGMpLSCKQGrharnJGlKlSbAdIf4eV0Wcdg9vZmeHkEtgEwBW3Kyf7uYTzjifCMgVyPSIjCBNVcKhgOO4MwmJFDI_JWfebxljKmIjolfYYBnq9oOGT6S36AN9NS7Qhet29HloQt03SJemb0xZm5ZOh9BhW3YVOk9t5w5M8l7jN10NG9-bEumsGXxAF13PyYk1jceLvzkmb4v5evaQLF_uH2fTZVLyQoQEhUh5ZTLOMmlUjJxVMo8J1SatlLWVkFIaZHkqbY7SKqVAgElFjmCNLCoxJtcH3951X0P8Qm-7wbXxpOaKCyi4kjJScKBK13nv0Ore1TvjfjQwve9R73vU-x71X49Rc3XQ1Ij4zxe54mkG4hfS6m4M</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Tang, Kewei</creator><creator>Xu, Kaiqiang</creator><creator>Jiang, Wei</creator><creator>Su, Zhixun</creator><creator>Sun, Xiyan</creator><creator>Luo, Xiaonan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0820-588X</orcidid><orcidid>https://orcid.org/0000-0001-6124-6328</orcidid><orcidid>https://orcid.org/0000-0002-6093-8266</orcidid><orcidid>https://orcid.org/0000-0003-4846-2231</orcidid><orcidid>https://orcid.org/0000-0002-0751-5045</orcidid><orcidid>https://orcid.org/0000-0002-4227-2499</orcidid></search><sort><creationdate>20230701</creationdate><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><author>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>autoencoders</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Deep learning</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Laplace equations</topic><topic>Laplacian operator</topic><topic>Multi-view</topic><topic>Neural networks</topic><topic>novel fusion strategy</topic><topic>Regularization</topic><topic>subspace clustering</topic><topic>Subspaces</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Kewei</creatorcontrib><creatorcontrib>Xu, Kaiqiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Luo, Xiaonan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Kewei</au><au>Xu, Kaiqiang</au><au>Jiang, Wei</au><au>Su, Zhixun</au><au>Sun, Xiyan</au><au>Luo, Xiaonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7457</spage><epage>7469</epage><pages>7457-7469</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3178145</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0820-588X</orcidid><orcidid>https://orcid.org/0000-0001-6124-6328</orcidid><orcidid>https://orcid.org/0000-0002-6093-8266</orcidid><orcidid>https://orcid.org/0000-0003-4846-2231</orcidid><orcidid>https://orcid.org/0000-0002-0751-5045</orcidid><orcidid>https://orcid.org/0000-0002-4227-2499</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7457-7469 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2022_3178145 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity autoencoders Clustering Clustering methods Deep learning Faces Feature extraction Laplace equations Laplacian operator Multi-view Neural networks novel fusion strategy Regularization subspace clustering Subspaces Sun |
title | Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20the%20Best%20Part%20From%20Multiple%20Laplacian%20Autoencoders%20for%20Multi-View%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Tang,%20Kewei&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7457&rft.epage=7469&rft.pages=7457-7469&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3178145&rft_dat=%3Cproquest_RIE%3E2823192844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823192844&rft_id=info:pmid/&rft_ieee_id=9782561&rfr_iscdi=true |