Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering

The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7457-7469
Hauptverfasser: Tang, Kewei, Xu, Kaiqiang, Jiang, Wei, Su, Zhixun, Sun, Xiyan, Luo, Xiaonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7469
container_issue 7
container_start_page 7457
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Tang, Kewei
Xu, Kaiqiang
Jiang, Wei
Su, Zhixun
Sun, Xiyan
Luo, Xiaonan
description The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.
doi_str_mv 10.1109/TKDE.2022.3178145
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3178145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9782561</ieee_id><sourcerecordid>2823192844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwAYiLJc4pXttJnGMpLSCKQGrharnJGlKlSbAdIf4eV0Wcdg9vZmeHkEtgEwBW3Kyf7uYTzjifCMgVyPSIjCBNVcKhgOO4MwmJFDI_JWfebxljKmIjolfYYBnq9oOGT6S36AN9NS7Qhet29HloQt03SJemb0xZm5ZOh9BhW3YVOk9t5w5M8l7jN10NG9-bEumsGXxAF13PyYk1jceLvzkmb4v5evaQLF_uH2fTZVLyQoQEhUh5ZTLOMmlUjJxVMo8J1SatlLWVkFIaZHkqbY7SKqVAgElFjmCNLCoxJtcH3951X0P8Qm-7wbXxpOaKCyi4kjJScKBK13nv0Ore1TvjfjQwve9R73vU-x71X49Rc3XQ1Ij4zxe54mkG4hfS6m4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823192844</pqid></control><display><type>article</type><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</creator><creatorcontrib>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</creatorcontrib><description>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3178145</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; autoencoders ; Clustering ; Clustering methods ; Deep learning ; Faces ; Feature extraction ; Laplace equations ; Laplacian operator ; Multi-view ; Neural networks ; novel fusion strategy ; Regularization ; subspace clustering ; Subspaces ; Sun</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7457-7469</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</citedby><cites>FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</cites><orcidid>0000-0003-0820-588X ; 0000-0001-6124-6328 ; 0000-0002-6093-8266 ; 0000-0003-4846-2231 ; 0000-0002-0751-5045 ; 0000-0002-4227-2499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9782561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9782561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Kewei</creatorcontrib><creatorcontrib>Xu, Kaiqiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Luo, Xiaonan</creatorcontrib><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</description><subject>Affinity</subject><subject>autoencoders</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Deep learning</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Laplace equations</subject><subject>Laplacian operator</subject><subject>Multi-view</subject><subject>Neural networks</subject><subject>novel fusion strategy</subject><subject>Regularization</subject><subject>subspace clustering</subject><subject>Subspaces</subject><subject>Sun</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwAYiLJc4pXttJnGMpLSCKQGrharnJGlKlSbAdIf4eV0Wcdg9vZmeHkEtgEwBW3Kyf7uYTzjifCMgVyPSIjCBNVcKhgOO4MwmJFDI_JWfebxljKmIjolfYYBnq9oOGT6S36AN9NS7Qhet29HloQt03SJemb0xZm5ZOh9BhW3YVOk9t5w5M8l7jN10NG9-bEumsGXxAF13PyYk1jceLvzkmb4v5evaQLF_uH2fTZVLyQoQEhUh5ZTLOMmlUjJxVMo8J1SatlLWVkFIaZHkqbY7SKqVAgElFjmCNLCoxJtcH3951X0P8Qm-7wbXxpOaKCyi4kjJScKBK13nv0Ore1TvjfjQwve9R73vU-x71X49Rc3XQ1Ij4zxe54mkG4hfS6m4M</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Tang, Kewei</creator><creator>Xu, Kaiqiang</creator><creator>Jiang, Wei</creator><creator>Su, Zhixun</creator><creator>Sun, Xiyan</creator><creator>Luo, Xiaonan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0820-588X</orcidid><orcidid>https://orcid.org/0000-0001-6124-6328</orcidid><orcidid>https://orcid.org/0000-0002-6093-8266</orcidid><orcidid>https://orcid.org/0000-0003-4846-2231</orcidid><orcidid>https://orcid.org/0000-0002-0751-5045</orcidid><orcidid>https://orcid.org/0000-0002-4227-2499</orcidid></search><sort><creationdate>20230701</creationdate><title>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</title><author>Tang, Kewei ; Xu, Kaiqiang ; Jiang, Wei ; Su, Zhixun ; Sun, Xiyan ; Luo, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3352da62064a81916d478788b5d8ffd3444ae0754f7e4f888131a537e1fa49d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>autoencoders</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Deep learning</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Laplace equations</topic><topic>Laplacian operator</topic><topic>Multi-view</topic><topic>Neural networks</topic><topic>novel fusion strategy</topic><topic>Regularization</topic><topic>subspace clustering</topic><topic>Subspaces</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Kewei</creatorcontrib><creatorcontrib>Xu, Kaiqiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Sun, Xiyan</creatorcontrib><creatorcontrib>Luo, Xiaonan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Kewei</au><au>Xu, Kaiqiang</au><au>Jiang, Wei</au><au>Su, Zhixun</au><au>Sun, Xiyan</au><au>Luo, Xiaonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7457</spage><epage>7469</epage><pages>7457-7469</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>The multi-view subspace clustering attracts much attention in recent years. Most methods follow the framework of fusing the affinity graph learned in each view. In this framework, both the fusion strategy and built graph of each view are very important. In this paper, we propose novel methods for multi-view subspace clustering to address these two aspects. On the one hand, we adopt the autoencoders with Laplacian regularization to construct the affinity graph in each view. Compared with previous work employing the autoencoders, the Laplacian term in our method can guide the learned latent representation favoring affinity extraction. Besides, we also discuss the reasons for adding Laplacian regularization. On the other hand, we propose a novel fusion strategy distinguished from the related literature. If the affinity graph of some view is not extracted well, the performance of previous fusion strategies will be seriously affected. Since our strategy can choose the best part from each affinity graph, it can overcome this limitation to some extent. Extensive experimental results on multiple benchmark data sets confirm the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3178145</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0820-588X</orcidid><orcidid>https://orcid.org/0000-0001-6124-6328</orcidid><orcidid>https://orcid.org/0000-0002-6093-8266</orcidid><orcidid>https://orcid.org/0000-0003-4846-2231</orcidid><orcidid>https://orcid.org/0000-0002-0751-5045</orcidid><orcidid>https://orcid.org/0000-0002-4227-2499</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7457-7469
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3178145
source IEEE Electronic Library (IEL)
subjects Affinity
autoencoders
Clustering
Clustering methods
Deep learning
Faces
Feature extraction
Laplace equations
Laplacian operator
Multi-view
Neural networks
novel fusion strategy
Regularization
subspace clustering
Subspaces
Sun
title Selecting the Best Part From Multiple Laplacian Autoencoders for Multi-View Subspace Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20the%20Best%20Part%20From%20Multiple%20Laplacian%20Autoencoders%20for%20Multi-View%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Tang,%20Kewei&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7457&rft.epage=7469&rft.pages=7457-7469&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3178145&rft_dat=%3Cproquest_RIE%3E2823192844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823192844&rft_id=info:pmid/&rft_ieee_id=9782561&rfr_iscdi=true