Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model

Recommendation systems rely heavily on behavioural and preferential data (e.g., ratings and likes) of a user to produce accurate recommendations. However, such unethical data aggregation and analytical practices of Service Providers (SP) causes privacy concerns among users. Local differential privac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-04, Vol.35 (4), p.4151-4163
Hauptverfasser: Neera, Jeyamohan, Chen, Xiaomin, Aslam, Nauman, Wang, Kezhi, Shu, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4163
container_issue 4
container_start_page 4151
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Neera, Jeyamohan
Chen, Xiaomin
Aslam, Nauman
Wang, Kezhi
Shu, Zhan
description Recommendation systems rely heavily on behavioural and preferential data (e.g., ratings and likes) of a user to produce accurate recommendations. However, such unethical data aggregation and analytical practices of Service Providers (SP) causes privacy concerns among users. Local differential privacy (LDP) based perturbation mechanisms address this concern by adding noise to users' data at the user-side before sending it to the SP. The SP then uses the perturbed data to perform recommendations. Although LDP protects the privacy of users from SP, it causes a substantial decline in recommendation accuracy. We propose an LDP-based Matrix Factorization (MF) with a Gaussian Mixture Model (MoG) to address this problem. The LDP perturbation mechanism, i.e., Bounded Laplace (BLP), regulates the effect of noise by confining the perturbed ratings to a predetermined domain. We derive a sufficient condition of the scale parameter for BLP to satisfy \varepsilon ɛ -LDP. We use the MoG model at the SP to estimate the noise added locally to the ratings and the MF algorithm to predict missing ratings. Our LDP based recommendation system improves the predictive accuracy without violating LDP principles. We demonstrate that our method offers a substantial increase in recommendation accuracy under a strong privacy guarantee through empirical evaluations on three real-world datasets, i.e., Movielens, Libimseti and Jester.
doi_str_mv 10.1109/TKDE.2021.3126577
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2021_3126577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9609550</ieee_id><sourcerecordid>2784549945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2874-a282e178e138d3171f912f5ebd3c140933e23b9a30b9e46cfe624db18009fa153</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhosoOKcPIN4EvO7MSdI2uZRtTnFDkQ0vS5qeuoyunUkr7u1tt-HVOQe-_z_wBcEt0BEAVQ_L18l0xCiDEQcWR0lyFgwgimTIQMF5t1MBoeAiuQyuvN9QSmUiYRB8vTv7oxskusrJqrGlbfZkWq11ZTAnH2jq7RarXDe2rjz5tM2azGujSzKxRYEOq8Z2x6HE7A8lM916b3VFFva3aR2SRZ1jeR1cFLr0eHOaw2D1NF2On8P52-xl_DgPDZOJCDWTDCGRCFzmHBIoFLAiwiznBgRVnCPjmdKcZgpFbAqMmcgzkJSqQkPEh8H9sXfn6u8WfZNu6tZV3cuUJVJEQinRU3CkjKu9d1ikO2e32u1ToGnvM-19pr3P9OSzy9wdMxYR_3kVUxVFlP8BOLhxNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784549945</pqid></control><display><type>article</type><title>Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model</title><source>IEEE Electronic Library (IEL)</source><creator>Neera, Jeyamohan ; Chen, Xiaomin ; Aslam, Nauman ; Wang, Kezhi ; Shu, Zhan</creator><creatorcontrib>Neera, Jeyamohan ; Chen, Xiaomin ; Aslam, Nauman ; Wang, Kezhi ; Shu, Zhan</creatorcontrib><description><![CDATA[Recommendation systems rely heavily on behavioural and preferential data (e.g., ratings and likes) of a user to produce accurate recommendations. However, such unethical data aggregation and analytical practices of Service Providers (SP) causes privacy concerns among users. Local differential privacy (LDP) based perturbation mechanisms address this concern by adding noise to users' data at the user-side before sending it to the SP. The SP then uses the perturbed data to perform recommendations. Although LDP protects the privacy of users from SP, it causes a substantial decline in recommendation accuracy. We propose an LDP-based Matrix Factorization (MF) with a Gaussian Mixture Model (MoG) to address this problem. The LDP perturbation mechanism, i.e., Bounded Laplace (BLP), regulates the effect of noise by confining the perturbed ratings to a predetermined domain. We derive a sufficient condition of the scale parameter for BLP to satisfy <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math> <mml:math><mml:mi>ɛ</mml:mi></mml:math><inline-graphic xlink:href="neera-ieq1-3126577.gif"/> </inline-formula>-LDP. We use the MoG model at the SP to estimate the noise added locally to the ratings and the MF algorithm to predict missing ratings. Our LDP based recommendation system improves the predictive accuracy without violating LDP principles. We demonstrate that our method offers a substantial increase in recommendation accuracy under a strong privacy guarantee through empirical evaluations on three real-world datasets, i.e., Movielens, Libimseti and Jester.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3126577</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Data aggregation ; Data management ; Data models ; Data privacy ; Differential privacy ; Empirical analysis ; Gaussian mixture model ; local differential privacy ; Mixtures ; Perturbation ; Perturbation methods ; Prediction algorithms ; Privacy ; Probabilistic models ; Ratings ; recommendation systems ; Recommender systems</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-04, Vol.35 (4), p.4151-4163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2874-a282e178e138d3171f912f5ebd3c140933e23b9a30b9e46cfe624db18009fa153</citedby><cites>FETCH-LOGICAL-c2874-a282e178e138d3171f912f5ebd3c140933e23b9a30b9e46cfe624db18009fa153</cites><orcidid>0000-0002-9500-3970 ; 0000-0001-8602-0800 ; 0000-0001-8771-4193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9609550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9609550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neera, Jeyamohan</creatorcontrib><creatorcontrib>Chen, Xiaomin</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Wang, Kezhi</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><title>Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Recommendation systems rely heavily on behavioural and preferential data (e.g., ratings and likes) of a user to produce accurate recommendations. However, such unethical data aggregation and analytical practices of Service Providers (SP) causes privacy concerns among users. Local differential privacy (LDP) based perturbation mechanisms address this concern by adding noise to users' data at the user-side before sending it to the SP. The SP then uses the perturbed data to perform recommendations. Although LDP protects the privacy of users from SP, it causes a substantial decline in recommendation accuracy. We propose an LDP-based Matrix Factorization (MF) with a Gaussian Mixture Model (MoG) to address this problem. The LDP perturbation mechanism, i.e., Bounded Laplace (BLP), regulates the effect of noise by confining the perturbed ratings to a predetermined domain. We derive a sufficient condition of the scale parameter for BLP to satisfy <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math> <mml:math><mml:mi>ɛ</mml:mi></mml:math><inline-graphic xlink:href="neera-ieq1-3126577.gif"/> </inline-formula>-LDP. We use the MoG model at the SP to estimate the noise added locally to the ratings and the MF algorithm to predict missing ratings. Our LDP based recommendation system improves the predictive accuracy without violating LDP principles. We demonstrate that our method offers a substantial increase in recommendation accuracy under a strong privacy guarantee through empirical evaluations on three real-world datasets, i.e., Movielens, Libimseti and Jester.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data aggregation</subject><subject>Data management</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Differential privacy</subject><subject>Empirical analysis</subject><subject>Gaussian mixture model</subject><subject>local differential privacy</subject><subject>Mixtures</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Prediction algorithms</subject><subject>Privacy</subject><subject>Probabilistic models</subject><subject>Ratings</subject><subject>recommendation systems</subject><subject>Recommender systems</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhosoOKcPIN4EvO7MSdI2uZRtTnFDkQ0vS5qeuoyunUkr7u1tt-HVOQe-_z_wBcEt0BEAVQ_L18l0xCiDEQcWR0lyFgwgimTIQMF5t1MBoeAiuQyuvN9QSmUiYRB8vTv7oxskusrJqrGlbfZkWq11ZTAnH2jq7RarXDe2rjz5tM2azGujSzKxRYEOq8Z2x6HE7A8lM916b3VFFva3aR2SRZ1jeR1cFLr0eHOaw2D1NF2On8P52-xl_DgPDZOJCDWTDCGRCFzmHBIoFLAiwiznBgRVnCPjmdKcZgpFbAqMmcgzkJSqQkPEh8H9sXfn6u8WfZNu6tZV3cuUJVJEQinRU3CkjKu9d1ikO2e32u1ToGnvM-19pr3P9OSzy9wdMxYR_3kVUxVFlP8BOLhxNA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Neera, Jeyamohan</creator><creator>Chen, Xiaomin</creator><creator>Aslam, Nauman</creator><creator>Wang, Kezhi</creator><creator>Shu, Zhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0001-8602-0800</orcidid><orcidid>https://orcid.org/0000-0001-8771-4193</orcidid></search><sort><creationdate>20230401</creationdate><title>Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model</title><author>Neera, Jeyamohan ; Chen, Xiaomin ; Aslam, Nauman ; Wang, Kezhi ; Shu, Zhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2874-a282e178e138d3171f912f5ebd3c140933e23b9a30b9e46cfe624db18009fa153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data aggregation</topic><topic>Data management</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Differential privacy</topic><topic>Empirical analysis</topic><topic>Gaussian mixture model</topic><topic>local differential privacy</topic><topic>Mixtures</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Prediction algorithms</topic><topic>Privacy</topic><topic>Probabilistic models</topic><topic>Ratings</topic><topic>recommendation systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neera, Jeyamohan</creatorcontrib><creatorcontrib>Chen, Xiaomin</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Wang, Kezhi</creatorcontrib><creatorcontrib>Shu, Zhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neera, Jeyamohan</au><au>Chen, Xiaomin</au><au>Aslam, Nauman</au><au>Wang, Kezhi</au><au>Shu, Zhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>4151</spage><epage>4163</epage><pages>4151-4163</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Recommendation systems rely heavily on behavioural and preferential data (e.g., ratings and likes) of a user to produce accurate recommendations. However, such unethical data aggregation and analytical practices of Service Providers (SP) causes privacy concerns among users. Local differential privacy (LDP) based perturbation mechanisms address this concern by adding noise to users' data at the user-side before sending it to the SP. The SP then uses the perturbed data to perform recommendations. Although LDP protects the privacy of users from SP, it causes a substantial decline in recommendation accuracy. We propose an LDP-based Matrix Factorization (MF) with a Gaussian Mixture Model (MoG) to address this problem. The LDP perturbation mechanism, i.e., Bounded Laplace (BLP), regulates the effect of noise by confining the perturbed ratings to a predetermined domain. We derive a sufficient condition of the scale parameter for BLP to satisfy <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math> <mml:math><mml:mi>ɛ</mml:mi></mml:math><inline-graphic xlink:href="neera-ieq1-3126577.gif"/> </inline-formula>-LDP. We use the MoG model at the SP to estimate the noise added locally to the ratings and the MF algorithm to predict missing ratings. Our LDP based recommendation system improves the predictive accuracy without violating LDP principles. We demonstrate that our method offers a substantial increase in recommendation accuracy under a strong privacy guarantee through empirical evaluations on three real-world datasets, i.e., Movielens, Libimseti and Jester.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3126577</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0001-8602-0800</orcidid><orcidid>https://orcid.org/0000-0001-8771-4193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-04, Vol.35 (4), p.4151-4163
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2021_3126577
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Data aggregation
Data management
Data models
Data privacy
Differential privacy
Empirical analysis
Gaussian mixture model
local differential privacy
Mixtures
Perturbation
Perturbation methods
Prediction algorithms
Privacy
Probabilistic models
Ratings
recommendation systems
Recommender systems
title Private and Utility Enhanced Recommendations With Local Differential Privacy and Gaussian Mixture Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Private%20and%20Utility%20Enhanced%20Recommendations%20With%20Local%20Differential%20Privacy%20and%20Gaussian%20Mixture%20Model&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Neera,%20Jeyamohan&rft.date=2023-04-01&rft.volume=35&rft.issue=4&rft.spage=4151&rft.epage=4163&rft.pages=4151-4163&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3126577&rft_dat=%3Cproquest_RIE%3E2784549945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784549945&rft_id=info:pmid/&rft_ieee_id=9609550&rfr_iscdi=true