Contextualized Graph Attention Network for Recommendation With Item Knowledge Graph
Graph neural networks (GNN) have recently been applied to exploit knowledge graph (KG) for recommendation. Existing GNN-based methods explicitly model the dependency between an entity and its local graph context in KG (i.e., the set of its first-order neighbors), but may not be effective in capturin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-01, Vol.35 (1), p.181-195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graph neural networks (GNN) have recently been applied to exploit knowledge graph (KG) for recommendation. Existing GNN-based methods explicitly model the dependency between an entity and its local graph context in KG (i.e., the set of its first-order neighbors), but may not be effective in capturing its non-local graph context (i.e., the set of most related high-order neighbors). In this paper, we propose a novel recommendation framework, named Contextualized Graph Attention Network (CGAT), which can explicitly exploit both local and non-local graph context information of an entity in KG. More specifically, CGAT captures the local context information by a user-specific graph attention mechanism, considering a user's personalized preferences on entities. In addition, CGAT employs a biased random walk sampling process to extract the non-local context of an entity, and utilizes a Recurrent Neural Network (RNN) to model the dependency between the entity and its non-local contextual entities. To capture the user's personalized preferences on items, an item-specific attention mechanism is also developed to model the dependency between a target item and the contextual items extracted from the user's historical behaviors. We compared CGAT with state-of-the-art KG-based recommendation methods on real datasets, and the experimental results demonstrate the effectiveness of CGAT. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2021.3082948 |