Constructing Measures of Sparsity

This paper presents a rigorous but tractable study of sparsity. We postulate a definition of sparsity that is as broad as possible, so that it generates all the various measures that are useful in practice, but narrow enough that the fundamental properties of generalized sparsity still hold. As we w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-08, Vol.34 (8), p.1-1
Hauptverfasser: Pastor, Giancarlo, Mora-Jimenez, Inmaculada, Jantti, Riku, Caamano, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Pastor, Giancarlo
Mora-Jimenez, Inmaculada
Jantti, Riku
Caamano, Antonio
description This paper presents a rigorous but tractable study of sparsity. We postulate a definition of sparsity that is as broad as possible, so that it generates all the various measures that are useful in practice, but narrow enough that the fundamental properties of generalized sparsity still hold. As we work through the various ways of demonstrating the advantageous properties of sparsity, we illustrate its meaning from geometrical and operational perspectives. Thereafter, we construct specific measures of sparsity which are successfully qualified in complexity analysis and sparse optimization scenarios. Overall, our main objective is to construct measures of sparsity that will facilitate and enhance the design of the next innovative sensing technologies.
doi_str_mv 10.1109/TKDE.2020.3029851
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2020_3029851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9219175</ieee_id><sourcerecordid>2686300934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-143af5db952ad9df44827a5d5b743b3ad6f436b54f73cd69d5d6f0fdcaf0a4783</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNEOuU8dteolAeoogFZW05sY1SQRLsZNG_b6JUrOZqdO6MdBC6xrDCGPT99u1xvSJAYEWBaMXxCVpgzlVOsManYwaGc0aZPEcXKe0AQEmFF-i2aJvUx6Hq6-Y7e_c2DdGnrA3ZZ2djqvv9JToL9if5q-Ncoq-n9bZ4yTcfz6_FwyaviBB9jhm1gbtSc2KddoExRaTljpeS0ZJaJwKjouQsSFo5oR0fNxBcZQNYJhVdorv5bhfbv8Gn3uzaITbjS0OEEhRAUzZSeKaq2KYUfTBdrH9t3BsMZjJhJhNmMmGOJsbOzdypvff_vJ7MSE4PUJNY6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686300934</pqid></control><display><type>article</type><title>Constructing Measures of Sparsity</title><source>IEEE Electronic Library (IEL)</source><creator>Pastor, Giancarlo ; Mora-Jimenez, Inmaculada ; Jantti, Riku ; Caamano, Antonio</creator><creatorcontrib>Pastor, Giancarlo ; Mora-Jimenez, Inmaculada ; Jantti, Riku ; Caamano, Antonio</creatorcontrib><description>This paper presents a rigorous but tractable study of sparsity. We postulate a definition of sparsity that is as broad as possible, so that it generates all the various measures that are useful in practice, but narrow enough that the fundamental properties of generalized sparsity still hold. As we work through the various ways of demonstrating the advantageous properties of sparsity, we illustrate its meaning from geometrical and operational perspectives. Thereafter, we construct specific measures of sparsity which are successfully qualified in complexity analysis and sparse optimization scenarios. Overall, our main objective is to construct measures of sparsity that will facilitate and enhance the design of the next innovative sensing technologies.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.3029851</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axioms ; complexity ; Complexity theory ; concentration ; diversity ; effective ; Entropy ; fairness ; generalized convexity ; Geometry ; Heuristic algorithms ; inequality ; information ; Optimization ; Sensors ; sparsity ; uncertainty</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-08, Vol.34 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-143af5db952ad9df44827a5d5b743b3ad6f436b54f73cd69d5d6f0fdcaf0a4783</citedby><cites>FETCH-LOGICAL-c266t-143af5db952ad9df44827a5d5b743b3ad6f436b54f73cd69d5d6f0fdcaf0a4783</cites><orcidid>0000-0002-9467-5185 ; 0000-0002-5398-2381 ; 0000-0001-6532-5314 ; 0000-0003-0735-367X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9219175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9219175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Mora-Jimenez, Inmaculada</creatorcontrib><creatorcontrib>Jantti, Riku</creatorcontrib><creatorcontrib>Caamano, Antonio</creatorcontrib><title>Constructing Measures of Sparsity</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>This paper presents a rigorous but tractable study of sparsity. We postulate a definition of sparsity that is as broad as possible, so that it generates all the various measures that are useful in practice, but narrow enough that the fundamental properties of generalized sparsity still hold. As we work through the various ways of demonstrating the advantageous properties of sparsity, we illustrate its meaning from geometrical and operational perspectives. Thereafter, we construct specific measures of sparsity which are successfully qualified in complexity analysis and sparse optimization scenarios. Overall, our main objective is to construct measures of sparsity that will facilitate and enhance the design of the next innovative sensing technologies.</description><subject>Axioms</subject><subject>complexity</subject><subject>Complexity theory</subject><subject>concentration</subject><subject>diversity</subject><subject>effective</subject><subject>Entropy</subject><subject>fairness</subject><subject>generalized convexity</subject><subject>Geometry</subject><subject>Heuristic algorithms</subject><subject>inequality</subject><subject>information</subject><subject>Optimization</subject><subject>Sensors</subject><subject>sparsity</subject><subject>uncertainty</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNEOuU8dteolAeoogFZW05sY1SQRLsZNG_b6JUrOZqdO6MdBC6xrDCGPT99u1xvSJAYEWBaMXxCVpgzlVOsManYwaGc0aZPEcXKe0AQEmFF-i2aJvUx6Hq6-Y7e_c2DdGnrA3ZZ2djqvv9JToL9if5q-Ncoq-n9bZ4yTcfz6_FwyaviBB9jhm1gbtSc2KddoExRaTljpeS0ZJaJwKjouQsSFo5oR0fNxBcZQNYJhVdorv5bhfbv8Gn3uzaITbjS0OEEhRAUzZSeKaq2KYUfTBdrH9t3BsMZjJhJhNmMmGOJsbOzdypvff_vJ7MSE4PUJNY6A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Pastor, Giancarlo</creator><creator>Mora-Jimenez, Inmaculada</creator><creator>Jantti, Riku</creator><creator>Caamano, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0002-5398-2381</orcidid><orcidid>https://orcid.org/0000-0001-6532-5314</orcidid><orcidid>https://orcid.org/0000-0003-0735-367X</orcidid></search><sort><creationdate>20220801</creationdate><title>Constructing Measures of Sparsity</title><author>Pastor, Giancarlo ; Mora-Jimenez, Inmaculada ; Jantti, Riku ; Caamano, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-143af5db952ad9df44827a5d5b743b3ad6f436b54f73cd69d5d6f0fdcaf0a4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axioms</topic><topic>complexity</topic><topic>Complexity theory</topic><topic>concentration</topic><topic>diversity</topic><topic>effective</topic><topic>Entropy</topic><topic>fairness</topic><topic>generalized convexity</topic><topic>Geometry</topic><topic>Heuristic algorithms</topic><topic>inequality</topic><topic>information</topic><topic>Optimization</topic><topic>Sensors</topic><topic>sparsity</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Mora-Jimenez, Inmaculada</creatorcontrib><creatorcontrib>Jantti, Riku</creatorcontrib><creatorcontrib>Caamano, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pastor, Giancarlo</au><au>Mora-Jimenez, Inmaculada</au><au>Jantti, Riku</au><au>Caamano, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Measures of Sparsity</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>This paper presents a rigorous but tractable study of sparsity. We postulate a definition of sparsity that is as broad as possible, so that it generates all the various measures that are useful in practice, but narrow enough that the fundamental properties of generalized sparsity still hold. As we work through the various ways of demonstrating the advantageous properties of sparsity, we illustrate its meaning from geometrical and operational perspectives. Thereafter, we construct specific measures of sparsity which are successfully qualified in complexity analysis and sparse optimization scenarios. Overall, our main objective is to construct measures of sparsity that will facilitate and enhance the design of the next innovative sensing technologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.3029851</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0002-5398-2381</orcidid><orcidid>https://orcid.org/0000-0001-6532-5314</orcidid><orcidid>https://orcid.org/0000-0003-0735-367X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-08, Vol.34 (8), p.1-1
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2020_3029851
source IEEE Electronic Library (IEL)
subjects Axioms
complexity
Complexity theory
concentration
diversity
effective
Entropy
fairness
generalized convexity
Geometry
Heuristic algorithms
inequality
information
Optimization
Sensors
sparsity
uncertainty
title Constructing Measures of Sparsity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Measures%20of%20Sparsity&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Pastor,%20Giancarlo&rft.date=2022-08-01&rft.volume=34&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.3029851&rft_dat=%3Cproquest_RIE%3E2686300934%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686300934&rft_id=info:pmid/&rft_ieee_id=9219175&rfr_iscdi=true