Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics

Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in networked contents often embody a hierarchical sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2020-11, Vol.32 (11), p.2144-2158
Hauptverfasser: Jin, Di, Wang, Kunzeng, Zhang, Ge, Jiao, Pengfei, He, Dongxiao, Fogelman-Soulie, Francoise, Huang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2158
container_issue 11
container_start_page 2144
container_title IEEE transactions on knowledge and data engineering
container_volume 32
creator Jin, Di
Wang, Kunzeng
Zhang, Ge
Jiao, Pengfei
He, Dongxiao
Fogelman-Soulie, Francoise
Huang, Xin
description Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in networked contents often embody a hierarchical semantic structure. Some words reflect a background topic of the whole network with all communities, some imply the high-level general topic covering several topic-related communities, and some imply the high-resolution specialized topic to describe each community. Ignoring such semantic structures often leads to defects in depicting networked contents where deep semantics are not fully utilized. To solve this problem, we propose a new Bayesian probabilistic model. By distinguishing words from either a background topic or some two-level topics (i.e., general and specialized topics), this model not only better utilizes the networked contents to help finding communities, but also provides a clearer multiplex semantic community interpretation. We then give an efficient variational algorithm for model inference. The superiority of this new approach is demonstrated by comparing with ten state-of-the-art methods on nine real networks and an artificial benchmark. A case study is further provided to show its strong ability in deep semantic interpretation of communities.
doi_str_mv 10.1109/TKDE.2019.2937298
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2019_2937298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8832212</ieee_id><sourcerecordid>2449308288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e1a49826b381598e210a1c8733731b747beece8ea25bf638f74e93fe55b844b83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJbakeGynsZfQloIoYtGyjhx30rrkhZ0IyteTqBWrmcU5d0Y3CK6BjgCoul-9TmcjRkGNmOIxU_IkGEAUyZCBgtNupwJCwUV8Hlx4v6OUyljCIMin2KBpbLkhk6oo2tI2Fj35ts2WvLV5Y-scf8gSC1021niS7snU-p5vrd_22qM2nxtXteX6jsyxRKfzO6LLNVnWaKzO7S-uyaqqO_syOMt07vHqOIfBx9NsNXkOF-_zl8nDIjTd802IoIWSbJxyCZGSyIBqMDLmPOaQxiJOEQ1K1CxKszGXWSxQ8QyjKJVCpJIPg9tDbu2qrxZ9k-yq1pXdyYQJoTiVTPYUHCjjKu8dZkntbKHdPgGa9KUmfalJX2pyLLVzbg6ORcR_vgtjDBj_A62fc-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308288</pqid></control><display><type>article</type><title>Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Di ; Wang, Kunzeng ; Zhang, Ge ; Jiao, Pengfei ; He, Dongxiao ; Fogelman-Soulie, Francoise ; Huang, Xin</creator><creatorcontrib>Jin, Di ; Wang, Kunzeng ; Zhang, Ge ; Jiao, Pengfei ; He, Dongxiao ; Fogelman-Soulie, Francoise ; Huang, Xin</creatorcontrib><description>Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in networked contents often embody a hierarchical semantic structure. Some words reflect a background topic of the whole network with all communities, some imply the high-level general topic covering several topic-related communities, and some imply the high-resolution specialized topic to describe each community. Ignoring such semantic structures often leads to defects in depicting networked contents where deep semantics are not fully utilized. To solve this problem, we propose a new Bayesian probabilistic model. By distinguishing words from either a background topic or some two-level topics (i.e., general and specialized topics), this model not only better utilizes the networked contents to help finding communities, but also provides a clearer multiplex semantic community interpretation. We then give an efficient variational algorithm for model inference. The superiority of this new approach is demonstrated by comparing with ten state-of-the-art methods on nine real networks and an artificial benchmark. A case study is further provided to show its strong ability in deep semantic interpretation of communities.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2019.2937298</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian probabilistic model ; Community detection ; Complex networks ; Inference algorithms ; multiplex semantics ; Multiplexing ; Network topologies ; Probabilistic logic ; Probabilistic models ; Semantics ; Structural hierarchy ; variational inference ; Words (language)</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2144-2158</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e1a49826b381598e210a1c8733731b747beece8ea25bf638f74e93fe55b844b83</citedby><cites>FETCH-LOGICAL-c293t-e1a49826b381598e210a1c8733731b747beece8ea25bf638f74e93fe55b844b83</cites><orcidid>0000-0003-1049-1002 ; 0000-0002-3650-0301 ; 0000-0002-1915-4179 ; 0000-0002-7445-9936 ; 0000-0001-6009-780X ; 0000-0002-3172-6977 ; 0000-0001-5422-5692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8832212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8832212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Di</creatorcontrib><creatorcontrib>Wang, Kunzeng</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Jiao, Pengfei</creatorcontrib><creatorcontrib>He, Dongxiao</creatorcontrib><creatorcontrib>Fogelman-Soulie, Francoise</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><title>Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in networked contents often embody a hierarchical semantic structure. Some words reflect a background topic of the whole network with all communities, some imply the high-level general topic covering several topic-related communities, and some imply the high-resolution specialized topic to describe each community. Ignoring such semantic structures often leads to defects in depicting networked contents where deep semantics are not fully utilized. To solve this problem, we propose a new Bayesian probabilistic model. By distinguishing words from either a background topic or some two-level topics (i.e., general and specialized topics), this model not only better utilizes the networked contents to help finding communities, but also provides a clearer multiplex semantic community interpretation. We then give an efficient variational algorithm for model inference. The superiority of this new approach is demonstrated by comparing with ten state-of-the-art methods on nine real networks and an artificial benchmark. A case study is further provided to show its strong ability in deep semantic interpretation of communities.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian probabilistic model</subject><subject>Community detection</subject><subject>Complex networks</subject><subject>Inference algorithms</subject><subject>multiplex semantics</subject><subject>Multiplexing</subject><subject>Network topologies</subject><subject>Probabilistic logic</subject><subject>Probabilistic models</subject><subject>Semantics</subject><subject>Structural hierarchy</subject><subject>variational inference</subject><subject>Words (language)</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJbakeGynsZfQloIoYtGyjhx30rrkhZ0IyteTqBWrmcU5d0Y3CK6BjgCoul-9TmcjRkGNmOIxU_IkGEAUyZCBgtNupwJCwUV8Hlx4v6OUyljCIMin2KBpbLkhk6oo2tI2Fj35ts2WvLV5Y-scf8gSC1021niS7snU-p5vrd_22qM2nxtXteX6jsyxRKfzO6LLNVnWaKzO7S-uyaqqO_syOMt07vHqOIfBx9NsNXkOF-_zl8nDIjTd802IoIWSbJxyCZGSyIBqMDLmPOaQxiJOEQ1K1CxKszGXWSxQ8QyjKJVCpJIPg9tDbu2qrxZ9k-yq1pXdyYQJoTiVTPYUHCjjKu8dZkntbKHdPgGa9KUmfalJX2pyLLVzbg6ORcR_vgtjDBj_A62fc-Q</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jin, Di</creator><creator>Wang, Kunzeng</creator><creator>Zhang, Ge</creator><creator>Jiao, Pengfei</creator><creator>He, Dongxiao</creator><creator>Fogelman-Soulie, Francoise</creator><creator>Huang, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1049-1002</orcidid><orcidid>https://orcid.org/0000-0002-3650-0301</orcidid><orcidid>https://orcid.org/0000-0002-1915-4179</orcidid><orcidid>https://orcid.org/0000-0002-7445-9936</orcidid><orcidid>https://orcid.org/0000-0001-6009-780X</orcidid><orcidid>https://orcid.org/0000-0002-3172-6977</orcidid><orcidid>https://orcid.org/0000-0001-5422-5692</orcidid></search><sort><creationdate>20201101</creationdate><title>Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics</title><author>Jin, Di ; Wang, Kunzeng ; Zhang, Ge ; Jiao, Pengfei ; He, Dongxiao ; Fogelman-Soulie, Francoise ; Huang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e1a49826b381598e210a1c8733731b747beece8ea25bf638f74e93fe55b844b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian probabilistic model</topic><topic>Community detection</topic><topic>Complex networks</topic><topic>Inference algorithms</topic><topic>multiplex semantics</topic><topic>Multiplexing</topic><topic>Network topologies</topic><topic>Probabilistic logic</topic><topic>Probabilistic models</topic><topic>Semantics</topic><topic>Structural hierarchy</topic><topic>variational inference</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Di</creatorcontrib><creatorcontrib>Wang, Kunzeng</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Jiao, Pengfei</creatorcontrib><creatorcontrib>He, Dongxiao</creatorcontrib><creatorcontrib>Fogelman-Soulie, Francoise</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Di</au><au>Wang, Kunzeng</au><au>Zhang, Ge</au><au>Jiao, Pengfei</au><au>He, Dongxiao</au><au>Fogelman-Soulie, Francoise</au><au>Huang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>2144</spage><epage>2158</epage><pages>2144-2158</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in networked contents often embody a hierarchical semantic structure. Some words reflect a background topic of the whole network with all communities, some imply the high-level general topic covering several topic-related communities, and some imply the high-resolution specialized topic to describe each community. Ignoring such semantic structures often leads to defects in depicting networked contents where deep semantics are not fully utilized. To solve this problem, we propose a new Bayesian probabilistic model. By distinguishing words from either a background topic or some two-level topics (i.e., general and specialized topics), this model not only better utilizes the networked contents to help finding communities, but also provides a clearer multiplex semantic community interpretation. We then give an efficient variational algorithm for model inference. The superiority of this new approach is demonstrated by comparing with ten state-of-the-art methods on nine real networks and an artificial benchmark. A case study is further provided to show its strong ability in deep semantic interpretation of communities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2019.2937298</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1049-1002</orcidid><orcidid>https://orcid.org/0000-0002-3650-0301</orcidid><orcidid>https://orcid.org/0000-0002-1915-4179</orcidid><orcidid>https://orcid.org/0000-0002-7445-9936</orcidid><orcidid>https://orcid.org/0000-0001-6009-780X</orcidid><orcidid>https://orcid.org/0000-0002-3172-6977</orcidid><orcidid>https://orcid.org/0000-0001-5422-5692</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2144-2158
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2019_2937298
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayes methods
Bayesian probabilistic model
Community detection
Complex networks
Inference algorithms
multiplex semantics
Multiplexing
Network topologies
Probabilistic logic
Probabilistic models
Semantics
Structural hierarchy
variational inference
Words (language)
title Detecting Communities with Multiplex Semantics by Distinguishing Background, General, and Specialized Topics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Communities%20with%20Multiplex%20Semantics%20by%20Distinguishing%20Background,%20General,%20and%20Specialized%20Topics&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Jin,%20Di&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.spage=2144&rft.epage=2158&rft.pages=2144-2158&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2019.2937298&rft_dat=%3Cproquest_RIE%3E2449308288%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308288&rft_id=info:pmid/&rft_ieee_id=8832212&rfr_iscdi=true