A General Framework for Implicit and Explicit Social Recommendation
Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2018-12, Vol.30 (12), p.2228-2241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2241 |
---|---|
container_issue | 12 |
container_start_page | 2228 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 30 |
creator | Hsu, Chin-Chi Yeh, Mi-Yen Lin, Shou-De |
description | Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems. |
doi_str_mv | 10.1109/TKDE.2018.2821174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2018_2821174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8328917</ieee_id><sourcerecordid>2132050182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1d0lM8jhmN4cDQedzyNoUOtumph3qf2_Ghk93B7_v7ruPkFugGQDVD5uXpzxDCipDhQCSn5EJCKFSBA3nsaccUs64vCRXw7CjlCqpYELms2TpOhdskyyCbd23D59J5UOyavumLuoxsV2Z5D-n4d0XdUTfXOHb1nWlHWvfXZOLyjaDuznVKflY5Jv5c7p-Xa7ms3VaMKHHVIjHaM2iVopKDkxXEmxpUSgoeGk1qgqY1AJQY8mpAsFQbVn0z-y22mo2JffHvX3wX3s3jGbn96GLJw0CQyri-xgpOFJF8MMQXGX6ULc2_Bqg5pCVOWRlDlmZU1ZRc3fU1M65f17F-xok-wNGtGJq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132050182</pqid></control><display><type>article</type><title>A General Framework for Implicit and Explicit Social Recommendation</title><source>IEEE Electronic Library (IEL)</source><creator>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</creator><creatorcontrib>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</creatorcontrib><description>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2821174</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collaboration ; Complexity theory ; Mathematical model ; Motion pictures ; Ratings ; Recommender systems ; Social network services ; social networks ; State of the art</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-12, Vol.30 (12), p.2228-2241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</citedby><cites>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</cites><orcidid>0000-0001-9970-1250 ; 0000-0001-7707-4487 ; 0000-0003-1880-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8328917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8328917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Chin-Chi</creatorcontrib><creatorcontrib>Yeh, Mi-Yen</creatorcontrib><creatorcontrib>Lin, Shou-De</creatorcontrib><title>A General Framework for Implicit and Explicit Social Recommendation</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</description><subject>Collaboration</subject><subject>Complexity theory</subject><subject>Mathematical model</subject><subject>Motion pictures</subject><subject>Ratings</subject><subject>Recommender systems</subject><subject>Social network services</subject><subject>social networks</subject><subject>State of the art</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1d0lM8jhmN4cDQedzyNoUOtumph3qf2_Ghk93B7_v7ruPkFugGQDVD5uXpzxDCipDhQCSn5EJCKFSBA3nsaccUs64vCRXw7CjlCqpYELms2TpOhdskyyCbd23D59J5UOyavumLuoxsV2Z5D-n4d0XdUTfXOHb1nWlHWvfXZOLyjaDuznVKflY5Jv5c7p-Xa7ms3VaMKHHVIjHaM2iVopKDkxXEmxpUSgoeGk1qgqY1AJQY8mpAsFQbVn0z-y22mo2JffHvX3wX3s3jGbn96GLJw0CQyri-xgpOFJF8MMQXGX6ULc2_Bqg5pCVOWRlDlmZU1ZRc3fU1M65f17F-xok-wNGtGJq</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Hsu, Chin-Chi</creator><creator>Yeh, Mi-Yen</creator><creator>Lin, Shou-De</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9970-1250</orcidid><orcidid>https://orcid.org/0000-0001-7707-4487</orcidid><orcidid>https://orcid.org/0000-0003-1880-8182</orcidid></search><sort><creationdate>20181201</creationdate><title>A General Framework for Implicit and Explicit Social Recommendation</title><author>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collaboration</topic><topic>Complexity theory</topic><topic>Mathematical model</topic><topic>Motion pictures</topic><topic>Ratings</topic><topic>Recommender systems</topic><topic>Social network services</topic><topic>social networks</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chin-Chi</creatorcontrib><creatorcontrib>Yeh, Mi-Yen</creatorcontrib><creatorcontrib>Lin, Shou-De</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Chin-Chi</au><au>Yeh, Mi-Yen</au><au>Lin, Shou-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Framework for Implicit and Explicit Social Recommendation</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>30</volume><issue>12</issue><spage>2228</spage><epage>2241</epage><pages>2228-2241</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2821174</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9970-1250</orcidid><orcidid>https://orcid.org/0000-0001-7707-4487</orcidid><orcidid>https://orcid.org/0000-0003-1880-8182</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2018-12, Vol.30 (12), p.2228-2241 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2018_2821174 |
source | IEEE Electronic Library (IEL) |
subjects | Collaboration Complexity theory Mathematical model Motion pictures Ratings Recommender systems Social network services social networks State of the art |
title | A General Framework for Implicit and Explicit Social Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Framework%20for%20Implicit%20and%20Explicit%20Social%20Recommendation&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Hsu,%20Chin-Chi&rft.date=2018-12-01&rft.volume=30&rft.issue=12&rft.spage=2228&rft.epage=2241&rft.pages=2228-2241&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2821174&rft_dat=%3Cproquest_RIE%3E2132050182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132050182&rft_id=info:pmid/&rft_ieee_id=8328917&rfr_iscdi=true |