A General Framework for Implicit and Explicit Social Recommendation

Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2018-12, Vol.30 (12), p.2228-2241
Hauptverfasser: Hsu, Chin-Chi, Yeh, Mi-Yen, Lin, Shou-De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2241
container_issue 12
container_start_page 2228
container_title IEEE transactions on knowledge and data engineering
container_volume 30
creator Hsu, Chin-Chi
Yeh, Mi-Yen
Lin, Shou-De
description Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.
doi_str_mv 10.1109/TKDE.2018.2821174
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2018_2821174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8328917</ieee_id><sourcerecordid>2132050182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1d0lM8jhmN4cDQedzyNoUOtumph3qf2_Ghk93B7_v7ruPkFugGQDVD5uXpzxDCipDhQCSn5EJCKFSBA3nsaccUs64vCRXw7CjlCqpYELms2TpOhdskyyCbd23D59J5UOyavumLuoxsV2Z5D-n4d0XdUTfXOHb1nWlHWvfXZOLyjaDuznVKflY5Jv5c7p-Xa7ms3VaMKHHVIjHaM2iVopKDkxXEmxpUSgoeGk1qgqY1AJQY8mpAsFQbVn0z-y22mo2JffHvX3wX3s3jGbn96GLJw0CQyri-xgpOFJF8MMQXGX6ULc2_Bqg5pCVOWRlDlmZU1ZRc3fU1M65f17F-xok-wNGtGJq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132050182</pqid></control><display><type>article</type><title>A General Framework for Implicit and Explicit Social Recommendation</title><source>IEEE Electronic Library (IEL)</source><creator>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</creator><creatorcontrib>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</creatorcontrib><description>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2821174</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collaboration ; Complexity theory ; Mathematical model ; Motion pictures ; Ratings ; Recommender systems ; Social network services ; social networks ; State of the art</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-12, Vol.30 (12), p.2228-2241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</citedby><cites>FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</cites><orcidid>0000-0001-9970-1250 ; 0000-0001-7707-4487 ; 0000-0003-1880-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8328917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8328917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Chin-Chi</creatorcontrib><creatorcontrib>Yeh, Mi-Yen</creatorcontrib><creatorcontrib>Lin, Shou-De</creatorcontrib><title>A General Framework for Implicit and Explicit Social Recommendation</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</description><subject>Collaboration</subject><subject>Complexity theory</subject><subject>Mathematical model</subject><subject>Motion pictures</subject><subject>Ratings</subject><subject>Recommender systems</subject><subject>Social network services</subject><subject>social networks</subject><subject>State of the art</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1d0lM8jhmN4cDQedzyNoUOtumph3qf2_Ghk93B7_v7ruPkFugGQDVD5uXpzxDCipDhQCSn5EJCKFSBA3nsaccUs64vCRXw7CjlCqpYELms2TpOhdskyyCbd23D59J5UOyavumLuoxsV2Z5D-n4d0XdUTfXOHb1nWlHWvfXZOLyjaDuznVKflY5Jv5c7p-Xa7ms3VaMKHHVIjHaM2iVopKDkxXEmxpUSgoeGk1qgqY1AJQY8mpAsFQbVn0z-y22mo2JffHvX3wX3s3jGbn96GLJw0CQyri-xgpOFJF8MMQXGX6ULc2_Bqg5pCVOWRlDlmZU1ZRc3fU1M65f17F-xok-wNGtGJq</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Hsu, Chin-Chi</creator><creator>Yeh, Mi-Yen</creator><creator>Lin, Shou-De</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9970-1250</orcidid><orcidid>https://orcid.org/0000-0001-7707-4487</orcidid><orcidid>https://orcid.org/0000-0003-1880-8182</orcidid></search><sort><creationdate>20181201</creationdate><title>A General Framework for Implicit and Explicit Social Recommendation</title><author>Hsu, Chin-Chi ; Yeh, Mi-Yen ; Lin, Shou-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-556821a2988074139f71ada2581c4da928f137951292d40815328b31913abfb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collaboration</topic><topic>Complexity theory</topic><topic>Mathematical model</topic><topic>Motion pictures</topic><topic>Ratings</topic><topic>Recommender systems</topic><topic>Social network services</topic><topic>social networks</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chin-Chi</creatorcontrib><creatorcontrib>Yeh, Mi-Yen</creatorcontrib><creatorcontrib>Lin, Shou-De</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Chin-Chi</au><au>Yeh, Mi-Yen</au><au>Lin, Shou-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Framework for Implicit and Explicit Social Recommendation</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>30</volume><issue>12</issue><spage>2228</spage><epage>2241</epage><pages>2228-2241</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Research of social recommendation aims at exploiting social information to improve the quality of a recommender system. It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users' ratings on items, but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2821174</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9970-1250</orcidid><orcidid>https://orcid.org/0000-0001-7707-4487</orcidid><orcidid>https://orcid.org/0000-0003-1880-8182</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2018-12, Vol.30 (12), p.2228-2241
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2018_2821174
source IEEE Electronic Library (IEL)
subjects Collaboration
Complexity theory
Mathematical model
Motion pictures
Ratings
Recommender systems
Social network services
social networks
State of the art
title A General Framework for Implicit and Explicit Social Recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Framework%20for%20Implicit%20and%20Explicit%20Social%20Recommendation&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Hsu,%20Chin-Chi&rft.date=2018-12-01&rft.volume=30&rft.issue=12&rft.spage=2228&rft.epage=2241&rft.pages=2228-2241&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2821174&rft_dat=%3Cproquest_RIE%3E2132050182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132050182&rft_id=info:pmid/&rft_ieee_id=8328917&rfr_iscdi=true