Topic Models for Unsupervised Cluster Matching

We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2018-04, Vol.30 (4), p.786-795
Hauptverfasser: Iwata, Tomoharu, Hirao, Tsutomu, Ueda, Naonori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 4
container_start_page 786
container_title IEEE transactions on knowledge and data engineering
container_volume 30
creator Iwata, Tomoharu
Hirao, Tsutomu
Ueda, Naonori
description We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.
doi_str_mv 10.1109/TKDE.2017.2778720
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2017_2778720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8125189</ieee_id><sourcerecordid>2174552236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2Y_s7lFqq2KLl_a8JJtdTYlN3E0E_70JLZ7mhXneGXgIuUXIEEE_bN-elhkFlBmVUkkKZ2SGQqiUosbzMQPHlDMuL8lVjHsAUFLhjGTbtqttsmkr18TEtyHZHeLQufBTR1cli2aIvQvJpujtZ334uCYXvmiiuznNOdmtltvFS7p-f35dPK5TSzXrU9TCelpKZrlkyG0uJXPe505z0Lm1JVcCuM49lKXSXMhKiArHhVegcsrZnNwf73ah_R5c7M2-HcJhfGkoSi4EpSwfKTxSNrQxBudNF-qvIvwaBDNpMZMWM2kxJy1j5-7YqZ1z_7xCKlBp9gfq61wm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174552236</pqid></control><display><type>article</type><title>Topic Models for Unsupervised Cluster Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</creator><creatorcontrib>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</creatorcontrib><description>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2017.2778720</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; clustering ; Clusters ; Data models ; Dictionaries ; Domains ; Languages ; Product reviews ; Resource management ; Sentences ; Sorting ; Topic modeling ; unsupervised object matching ; Vocabulary</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-04, Vol.30 (4), p.786-795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</citedby><cites>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</cites><orcidid>0000-0003-4425-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8125189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8125189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Hirao, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><title>Topic Models for Unsupervised Cluster Matching</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</description><subject>Analytical models</subject><subject>clustering</subject><subject>Clusters</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Domains</subject><subject>Languages</subject><subject>Product reviews</subject><subject>Resource management</subject><subject>Sentences</subject><subject>Sorting</subject><subject>Topic modeling</subject><subject>unsupervised object matching</subject><subject>Vocabulary</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2Y_s7lFqq2KLl_a8JJtdTYlN3E0E_70JLZ7mhXneGXgIuUXIEEE_bN-elhkFlBmVUkkKZ2SGQqiUosbzMQPHlDMuL8lVjHsAUFLhjGTbtqttsmkr18TEtyHZHeLQufBTR1cli2aIvQvJpujtZ334uCYXvmiiuznNOdmtltvFS7p-f35dPK5TSzXrU9TCelpKZrlkyG0uJXPe505z0Lm1JVcCuM49lKXSXMhKiArHhVegcsrZnNwf73ah_R5c7M2-HcJhfGkoSi4EpSwfKTxSNrQxBudNF-qvIvwaBDNpMZMWM2kxJy1j5-7YqZ1z_7xCKlBp9gfq61wm</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Iwata, Tomoharu</creator><creator>Hirao, Tsutomu</creator><creator>Ueda, Naonori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4425-1971</orcidid></search><sort><creationdate>20180401</creationdate><title>Topic Models for Unsupervised Cluster Matching</title><author>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>clustering</topic><topic>Clusters</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Domains</topic><topic>Languages</topic><topic>Product reviews</topic><topic>Resource management</topic><topic>Sentences</topic><topic>Sorting</topic><topic>Topic modeling</topic><topic>unsupervised object matching</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Hirao, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwata, Tomoharu</au><au>Hirao, Tsutomu</au><au>Ueda, Naonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topic Models for Unsupervised Cluster Matching</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>786</spage><epage>795</epage><pages>786-795</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2017.2778720</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4425-1971</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2018-04, Vol.30 (4), p.786-795
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2017_2778720
source IEEE Electronic Library (IEL)
subjects Analytical models
clustering
Clusters
Data models
Dictionaries
Domains
Languages
Product reviews
Resource management
Sentences
Sorting
Topic modeling
unsupervised object matching
Vocabulary
title Topic Models for Unsupervised Cluster Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topic%20Models%20for%20Unsupervised%20Cluster%20Matching&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Iwata,%20Tomoharu&rft.date=2018-04-01&rft.volume=30&rft.issue=4&rft.spage=786&rft.epage=795&rft.pages=786-795&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2017.2778720&rft_dat=%3Cproquest_RIE%3E2174552236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174552236&rft_id=info:pmid/&rft_ieee_id=8125189&rfr_iscdi=true