Topic Models for Unsupervised Cluster Matching
We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment informatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2018-04, Vol.30 (4), p.786-795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 4 |
container_start_page | 786 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 30 |
creator | Iwata, Tomoharu Hirao, Tsutomu Ueda, Naonori |
description | We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews. |
doi_str_mv | 10.1109/TKDE.2017.2778720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2017_2778720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8125189</ieee_id><sourcerecordid>2174552236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2Y_s7lFqq2KLl_a8JJtdTYlN3E0E_70JLZ7mhXneGXgIuUXIEEE_bN-elhkFlBmVUkkKZ2SGQqiUosbzMQPHlDMuL8lVjHsAUFLhjGTbtqttsmkr18TEtyHZHeLQufBTR1cli2aIvQvJpujtZ334uCYXvmiiuznNOdmtltvFS7p-f35dPK5TSzXrU9TCelpKZrlkyG0uJXPe505z0Lm1JVcCuM49lKXSXMhKiArHhVegcsrZnNwf73ah_R5c7M2-HcJhfGkoSi4EpSwfKTxSNrQxBudNF-qvIvwaBDNpMZMWM2kxJy1j5-7YqZ1z_7xCKlBp9gfq61wm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174552236</pqid></control><display><type>article</type><title>Topic Models for Unsupervised Cluster Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</creator><creatorcontrib>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</creatorcontrib><description>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2017.2778720</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; clustering ; Clusters ; Data models ; Dictionaries ; Domains ; Languages ; Product reviews ; Resource management ; Sentences ; Sorting ; Topic modeling ; unsupervised object matching ; Vocabulary</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-04, Vol.30 (4), p.786-795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</citedby><cites>FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</cites><orcidid>0000-0003-4425-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8125189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8125189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Hirao, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><title>Topic Models for Unsupervised Cluster Matching</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</description><subject>Analytical models</subject><subject>clustering</subject><subject>Clusters</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Domains</subject><subject>Languages</subject><subject>Product reviews</subject><subject>Resource management</subject><subject>Sentences</subject><subject>Sorting</subject><subject>Topic modeling</subject><subject>unsupervised object matching</subject><subject>Vocabulary</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2Y_s7lFqq2KLl_a8JJtdTYlN3E0E_70JLZ7mhXneGXgIuUXIEEE_bN-elhkFlBmVUkkKZ2SGQqiUosbzMQPHlDMuL8lVjHsAUFLhjGTbtqttsmkr18TEtyHZHeLQufBTR1cli2aIvQvJpujtZ334uCYXvmiiuznNOdmtltvFS7p-f35dPK5TSzXrU9TCelpKZrlkyG0uJXPe505z0Lm1JVcCuM49lKXSXMhKiArHhVegcsrZnNwf73ah_R5c7M2-HcJhfGkoSi4EpSwfKTxSNrQxBudNF-qvIvwaBDNpMZMWM2kxJy1j5-7YqZ1z_7xCKlBp9gfq61wm</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Iwata, Tomoharu</creator><creator>Hirao, Tsutomu</creator><creator>Ueda, Naonori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4425-1971</orcidid></search><sort><creationdate>20180401</creationdate><title>Topic Models for Unsupervised Cluster Matching</title><author>Iwata, Tomoharu ; Hirao, Tsutomu ; Ueda, Naonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-195cf2b73c47314c6773eff6e94096ccb4850496f0bb89457d55d16ccf8086243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>clustering</topic><topic>Clusters</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Domains</topic><topic>Languages</topic><topic>Product reviews</topic><topic>Resource management</topic><topic>Sentences</topic><topic>Sorting</topic><topic>Topic modeling</topic><topic>unsupervised object matching</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Hirao, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwata, Tomoharu</au><au>Hirao, Tsutomu</au><au>Ueda, Naonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topic Models for Unsupervised Cluster Matching</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>786</spage><epage>795</epage><pages>786-795</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>We propose topic models for unsupervised cluster matching, which is the task of finding matching between clusters in different domains without correspondence information. For example, the proposed model finds correspondence between document clusters in English and German without alignment information, such as dictionaries and parallel sentences/documents. The proposed model assumes that documents in all languages have a common latent topic structure, and there are potentially infinite number of topic proportion vectors in a latent topic space that is shared by all languages. Each document is generated using one of the topic proportion vectors and language-specific word distributions. By inferring a topic proportion vector used for each document, we can allocate documents in different languages into common clusters, where each cluster is associated with a topic proportion vector. Documents assigned into the same cluster are considered to be matched. We develop an efficient inference procedure for the proposed model based on collapsed Gibbs sampling. The effectiveness of the proposed model is demonstrated with real data sets including multilingual corpora of Wikipedia and product reviews.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2017.2778720</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4425-1971</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2018-04, Vol.30 (4), p.786-795 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2017_2778720 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models clustering Clusters Data models Dictionaries Domains Languages Product reviews Resource management Sentences Sorting Topic modeling unsupervised object matching Vocabulary |
title | Topic Models for Unsupervised Cluster Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topic%20Models%20for%20Unsupervised%20Cluster%20Matching&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Iwata,%20Tomoharu&rft.date=2018-04-01&rft.volume=30&rft.issue=4&rft.spage=786&rft.epage=795&rft.pages=786-795&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2017.2778720&rft_dat=%3Cproquest_RIE%3E2174552236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174552236&rft_id=info:pmid/&rft_ieee_id=8125189&rfr_iscdi=true |