Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting
Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2017-05, Vol.29 (5), p.1059-1072 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1072 |
---|---|
container_issue | 5 |
container_start_page | 1059 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 29 |
creator | Liang Zhao Qian Sun Jieping Ye Feng Chen Chang-Tien Lu Ramakrishnan, Naren |
description | Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach. |
doi_str_mv | 10.1109/TKDE.2017.2657624 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2017_2657624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7831414</ieee_id><sourcerecordid>2174444724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqXwAxBLJOYUn2PHyYhKC4hWDC2z5cQXlJLGwXaQ-Pe4asUt7w3Pfegh5BboDICWD9u3p8WMUZAzlguZM35GJiBEkTIo4Tz2lEPKMy4vyZX3O0ppIQuYkM0SdRgdJnPb--B026NJ1mMX2nSr_VeyQu36tv9M1tZg55PGumQz6NDagPvBOt0lix_sQ7K0DmvtQ2SvyUWjO483p5ySj-ViO39JV-_Pr_PHVVqzMgtpARpM1VRVjLwWDERtBDWS06yqjMQS6rrGIv7JclMKkwsaaWMqQA2aN9mU3B_3Ds5-j-iD2tnR9fGkYiB5LMl4pOBI1c5677BRg2v32v0qoOrgTh3cqYM7dXIXZ-6OMy0i_vOyyIADz_4AnWtsIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174444724</pqid></control><display><type>article</type><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</creator><creatorcontrib>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</creatorcontrib><description>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2017.2657624</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Digital media ; dynamic query expansion ; Event forecasting ; Forecasting ; hard thresholding ; Iterative methods ; LASSO ; Learning ; Mathematical models ; multi-task learning ; Outbreaks ; Predictive models ; Query expansion ; Social networks ; Spatiotemporal phenomena ; Twitter ; Urban areas</subject><ispartof>IEEE transactions on knowledge and data engineering, 2017-05, Vol.29 (5), p.1059-1072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</citedby><cites>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7831414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7831414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Zhao</creatorcontrib><creatorcontrib>Qian Sun</creatorcontrib><creatorcontrib>Jieping Ye</creatorcontrib><creatorcontrib>Feng Chen</creatorcontrib><creatorcontrib>Chang-Tien Lu</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</description><subject>Data models</subject><subject>Digital media</subject><subject>dynamic query expansion</subject><subject>Event forecasting</subject><subject>Forecasting</subject><subject>hard thresholding</subject><subject>Iterative methods</subject><subject>LASSO</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>multi-task learning</subject><subject>Outbreaks</subject><subject>Predictive models</subject><subject>Query expansion</subject><subject>Social networks</subject><subject>Spatiotemporal phenomena</subject><subject>Twitter</subject><subject>Urban areas</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqXwAxBLJOYUn2PHyYhKC4hWDC2z5cQXlJLGwXaQ-Pe4asUt7w3Pfegh5BboDICWD9u3p8WMUZAzlguZM35GJiBEkTIo4Tz2lEPKMy4vyZX3O0ppIQuYkM0SdRgdJnPb--B026NJ1mMX2nSr_VeyQu36tv9M1tZg55PGumQz6NDagPvBOt0lix_sQ7K0DmvtQ2SvyUWjO483p5ySj-ViO39JV-_Pr_PHVVqzMgtpARpM1VRVjLwWDERtBDWS06yqjMQS6rrGIv7JclMKkwsaaWMqQA2aN9mU3B_3Ds5-j-iD2tnR9fGkYiB5LMl4pOBI1c5677BRg2v32v0qoOrgTh3cqYM7dXIXZ-6OMy0i_vOyyIADz_4AnWtsIg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Liang Zhao</creator><creator>Qian Sun</creator><creator>Jieping Ye</creator><creator>Feng Chen</creator><creator>Chang-Tien Lu</creator><creator>Ramakrishnan, Naren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><author>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data models</topic><topic>Digital media</topic><topic>dynamic query expansion</topic><topic>Event forecasting</topic><topic>Forecasting</topic><topic>hard thresholding</topic><topic>Iterative methods</topic><topic>LASSO</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>multi-task learning</topic><topic>Outbreaks</topic><topic>Predictive models</topic><topic>Query expansion</topic><topic>Social networks</topic><topic>Spatiotemporal phenomena</topic><topic>Twitter</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang Zhao</creatorcontrib><creatorcontrib>Qian Sun</creatorcontrib><creatorcontrib>Jieping Ye</creatorcontrib><creatorcontrib>Feng Chen</creatorcontrib><creatorcontrib>Chang-Tien Lu</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Zhao</au><au>Qian Sun</au><au>Jieping Ye</au><au>Feng Chen</au><au>Chang-Tien Lu</au><au>Ramakrishnan, Naren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>29</volume><issue>5</issue><spage>1059</spage><epage>1072</epage><pages>1059-1072</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2017.2657624</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2017-05, Vol.29 (5), p.1059-1072 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2017_2657624 |
source | IEEE Electronic Library (IEL) |
subjects | Data models Digital media dynamic query expansion Event forecasting Forecasting hard thresholding Iterative methods LASSO Learning Mathematical models multi-task learning Outbreaks Predictive models Query expansion Social networks Spatiotemporal phenomena Urban areas |
title | Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Constrained%20Multi-Task%20Learning%20Models%20for%20Spatiotemporal%20Event%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liang%20Zhao&rft.date=2017-05-01&rft.volume=29&rft.issue=5&rft.spage=1059&rft.epage=1072&rft.pages=1059-1072&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2017.2657624&rft_dat=%3Cproquest_RIE%3E2174444724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174444724&rft_id=info:pmid/&rft_ieee_id=7831414&rfr_iscdi=true |