Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting

Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2017-05, Vol.29 (5), p.1059-1072
Hauptverfasser: Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, Ramakrishnan, Naren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue 5
container_start_page 1059
container_title IEEE transactions on knowledge and data engineering
container_volume 29
creator Liang Zhao
Qian Sun
Jieping Ye
Feng Chen
Chang-Tien Lu
Ramakrishnan, Naren
description Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.
doi_str_mv 10.1109/TKDE.2017.2657624
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2017_2657624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7831414</ieee_id><sourcerecordid>2174444724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqXwAxBLJOYUn2PHyYhKC4hWDC2z5cQXlJLGwXaQ-Pe4asUt7w3Pfegh5BboDICWD9u3p8WMUZAzlguZM35GJiBEkTIo4Tz2lEPKMy4vyZX3O0ppIQuYkM0SdRgdJnPb--B026NJ1mMX2nSr_VeyQu36tv9M1tZg55PGumQz6NDagPvBOt0lix_sQ7K0DmvtQ2SvyUWjO483p5ySj-ViO39JV-_Pr_PHVVqzMgtpARpM1VRVjLwWDERtBDWS06yqjMQS6rrGIv7JclMKkwsaaWMqQA2aN9mU3B_3Ds5-j-iD2tnR9fGkYiB5LMl4pOBI1c5677BRg2v32v0qoOrgTh3cqYM7dXIXZ-6OMy0i_vOyyIADz_4AnWtsIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174444724</pqid></control><display><type>article</type><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</creator><creatorcontrib>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</creatorcontrib><description>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2017.2657624</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Digital media ; dynamic query expansion ; Event forecasting ; Forecasting ; hard thresholding ; Iterative methods ; LASSO ; Learning ; Mathematical models ; multi-task learning ; Outbreaks ; Predictive models ; Query expansion ; Social networks ; Spatiotemporal phenomena ; Twitter ; Urban areas</subject><ispartof>IEEE transactions on knowledge and data engineering, 2017-05, Vol.29 (5), p.1059-1072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</citedby><cites>FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7831414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7831414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Zhao</creatorcontrib><creatorcontrib>Qian Sun</creatorcontrib><creatorcontrib>Jieping Ye</creatorcontrib><creatorcontrib>Feng Chen</creatorcontrib><creatorcontrib>Chang-Tien Lu</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</description><subject>Data models</subject><subject>Digital media</subject><subject>dynamic query expansion</subject><subject>Event forecasting</subject><subject>Forecasting</subject><subject>hard thresholding</subject><subject>Iterative methods</subject><subject>LASSO</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>multi-task learning</subject><subject>Outbreaks</subject><subject>Predictive models</subject><subject>Query expansion</subject><subject>Social networks</subject><subject>Spatiotemporal phenomena</subject><subject>Twitter</subject><subject>Urban areas</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqXwAxBLJOYUn2PHyYhKC4hWDC2z5cQXlJLGwXaQ-Pe4asUt7w3Pfegh5BboDICWD9u3p8WMUZAzlguZM35GJiBEkTIo4Tz2lEPKMy4vyZX3O0ppIQuYkM0SdRgdJnPb--B026NJ1mMX2nSr_VeyQu36tv9M1tZg55PGumQz6NDagPvBOt0lix_sQ7K0DmvtQ2SvyUWjO483p5ySj-ViO39JV-_Pr_PHVVqzMgtpARpM1VRVjLwWDERtBDWS06yqjMQS6rrGIv7JclMKkwsaaWMqQA2aN9mU3B_3Ds5-j-iD2tnR9fGkYiB5LMl4pOBI1c5677BRg2v32v0qoOrgTh3cqYM7dXIXZ-6OMy0i_vOyyIADz_4AnWtsIg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Liang Zhao</creator><creator>Qian Sun</creator><creator>Jieping Ye</creator><creator>Feng Chen</creator><creator>Chang-Tien Lu</creator><creator>Ramakrishnan, Naren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</title><author>Liang Zhao ; Qian Sun ; Jieping Ye ; Feng Chen ; Chang-Tien Lu ; Ramakrishnan, Naren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-81a1dbfbba1d6c5215cd50d7403bbd7e91ccce887826d95d650bfbddb1ea1a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data models</topic><topic>Digital media</topic><topic>dynamic query expansion</topic><topic>Event forecasting</topic><topic>Forecasting</topic><topic>hard thresholding</topic><topic>Iterative methods</topic><topic>LASSO</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>multi-task learning</topic><topic>Outbreaks</topic><topic>Predictive models</topic><topic>Query expansion</topic><topic>Social networks</topic><topic>Spatiotemporal phenomena</topic><topic>Twitter</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang Zhao</creatorcontrib><creatorcontrib>Qian Sun</creatorcontrib><creatorcontrib>Jieping Ye</creatorcontrib><creatorcontrib>Feng Chen</creatorcontrib><creatorcontrib>Chang-Tien Lu</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Zhao</au><au>Qian Sun</au><au>Jieping Ye</au><au>Feng Chen</au><au>Chang-Tien Lu</au><au>Ramakrishnan, Naren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>29</volume><issue>5</issue><spage>1059</spage><epage>1072</epage><pages>1059-1072</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2017.2657624</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2017-05, Vol.29 (5), p.1059-1072
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2017_2657624
source IEEE Electronic Library (IEL)
subjects Data models
Digital media
dynamic query expansion
Event forecasting
Forecasting
hard thresholding
Iterative methods
LASSO
Learning
Mathematical models
multi-task learning
Outbreaks
Predictive models
Query expansion
Social networks
Spatiotemporal phenomena
Twitter
Urban areas
title Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Constrained%20Multi-Task%20Learning%20Models%20for%20Spatiotemporal%20Event%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liang%20Zhao&rft.date=2017-05-01&rft.volume=29&rft.issue=5&rft.spage=1059&rft.epage=1072&rft.pages=1059-1072&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2017.2657624&rft_dat=%3Cproquest_RIE%3E2174444724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174444724&rft_id=info:pmid/&rft_ieee_id=7831414&rfr_iscdi=true