Runtime Optimizations for Tree-Based Machine Learning Models

Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2014-09, Vol.26 (9), p.2281-2292
Hauptverfasser: Asadi, Nima, Lin, Jimmy, de Vries, Arjen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2292
container_issue 9
container_start_page 2281
container_title IEEE transactions on knowledge and data engineering
container_volume 26
creator Asadi, Nima
Lin, Jimmy
de Vries, Arjen P.
description Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard implementations.
doi_str_mv 10.1109/TKDE.2013.73
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2013_73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6513227</ieee_id><sourcerecordid>3408770271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-ba536286e63f682d0007b0aba7a6c6fb0f8adf4fd73007185f8363333de59c2e3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKs3b14WvLo1k2w-FrxorR_YUpB6Dtndiaa0uzXZHupfb0rFubyB-TGP9wi5BDoCoOXt4u1xMmIU-EjxIzIAIXTOoITjtNMC8oIX6pScxbiklGqlYUDu3rdt79eYzTdJ_I_tfdfGzHUhWwTE_MFGbLKZrb98i9kUbWh9-5nNugZX8ZycOLuKePGnQ_LxNFmMX_Lp_Pl1fD_Na86gzysruGRaouROatYkc1VRW1llZS1dRZ22jStco3i6gBZOc8nTNCjKmiEfkuvD303ovrcYe7PstqFNliZlLEqhNbBE3RyoOnQxBnRmE_zahp0Bavb9mH0_Zt-PUTzhVwfcI-I_KgVwxhT_BRjCX44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554958812</pqid></control><display><type>article</type><title>Runtime Optimizations for Tree-Based Machine Learning Models</title><source>IEEE Electronic Library (IEL)</source><creator>Asadi, Nima ; Lin, Jimmy ; de Vries, Arjen P.</creator><creatorcontrib>Asadi, Nima ; Lin, Jimmy ; de Vries, Arjen P.</creatorcontrib><description>Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard implementations.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2013.73</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Indexes ; Information Storage and Retrieval ; Information Technology and Systems ; Learning to Rank ; Optimization ; Predictive models ; Program processors ; Regression tree analysis ; Scalability and Efficiency ; Web Search</subject><ispartof>IEEE transactions on knowledge and data engineering, 2014-09, Vol.26 (9), p.2281-2292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-ba536286e63f682d0007b0aba7a6c6fb0f8adf4fd73007185f8363333de59c2e3</citedby><cites>FETCH-LOGICAL-c321t-ba536286e63f682d0007b0aba7a6c6fb0f8adf4fd73007185f8363333de59c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6513227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6513227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asadi, Nima</creatorcontrib><creatorcontrib>Lin, Jimmy</creatorcontrib><creatorcontrib>de Vries, Arjen P.</creatorcontrib><title>Runtime Optimizations for Tree-Based Machine Learning Models</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard implementations.</description><subject>Arrays</subject><subject>Indexes</subject><subject>Information Storage and Retrieval</subject><subject>Information Technology and Systems</subject><subject>Learning to Rank</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Program processors</subject><subject>Regression tree analysis</subject><subject>Scalability and Efficiency</subject><subject>Web Search</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKs3b14WvLo1k2w-FrxorR_YUpB6Dtndiaa0uzXZHupfb0rFubyB-TGP9wi5BDoCoOXt4u1xMmIU-EjxIzIAIXTOoITjtNMC8oIX6pScxbiklGqlYUDu3rdt79eYzTdJ_I_tfdfGzHUhWwTE_MFGbLKZrb98i9kUbWh9-5nNugZX8ZycOLuKePGnQ_LxNFmMX_Lp_Pl1fD_Na86gzysruGRaouROatYkc1VRW1llZS1dRZ22jStco3i6gBZOc8nTNCjKmiEfkuvD303ovrcYe7PstqFNliZlLEqhNbBE3RyoOnQxBnRmE_zahp0Bavb9mH0_Zt-PUTzhVwfcI-I_KgVwxhT_BRjCX44</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Asadi, Nima</creator><creator>Lin, Jimmy</creator><creator>de Vries, Arjen P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201409</creationdate><title>Runtime Optimizations for Tree-Based Machine Learning Models</title><author>Asadi, Nima ; Lin, Jimmy ; de Vries, Arjen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-ba536286e63f682d0007b0aba7a6c6fb0f8adf4fd73007185f8363333de59c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arrays</topic><topic>Indexes</topic><topic>Information Storage and Retrieval</topic><topic>Information Technology and Systems</topic><topic>Learning to Rank</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Program processors</topic><topic>Regression tree analysis</topic><topic>Scalability and Efficiency</topic><topic>Web Search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Nima</creatorcontrib><creatorcontrib>Lin, Jimmy</creatorcontrib><creatorcontrib>de Vries, Arjen P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asadi, Nima</au><au>Lin, Jimmy</au><au>de Vries, Arjen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runtime Optimizations for Tree-Based Machine Learning Models</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2014-09</date><risdate>2014</risdate><volume>26</volume><issue>9</issue><spage>2281</spage><epage>2292</epage><pages>2281-2292</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard implementations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2013.73</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2014-09, Vol.26 (9), p.2281-2292
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2013_73
source IEEE Electronic Library (IEL)
subjects Arrays
Indexes
Information Storage and Retrieval
Information Technology and Systems
Learning to Rank
Optimization
Predictive models
Program processors
Regression tree analysis
Scalability and Efficiency
Web Search
title Runtime Optimizations for Tree-Based Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runtime%20Optimizations%20for%20Tree-Based%20Machine%20Learning%20Models&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Asadi,%20Nima&rft.date=2014-09&rft.volume=26&rft.issue=9&rft.spage=2281&rft.epage=2292&rft.pages=2281-2292&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2013.73&rft_dat=%3Cproquest_RIE%3E3408770271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554958812&rft_id=info:pmid/&rft_ieee_id=6513227&rfr_iscdi=true