The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems
This is a study of the long tail problem of recommender systems when many items in the long tail have only a few ratings, thus making it hard to use them in recommender systems. The approach presented in this paper clusters items according to their popularities, so that the recommendations for tail...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2013-08, Vol.25 (8), p.1904-1915 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1915 |
---|---|
container_issue | 8 |
container_start_page | 1904 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 25 |
creator | Park, Yoon-Joo |
description | This is a study of the long tail problem of recommender systems when many items in the long tail have only a few ratings, thus making it hard to use them in recommender systems. The approach presented in this paper clusters items according to their popularities, so that the recommendations for tail items are based on the ratings in more intensively clustered groups and for the head items are based on the ratings of individual items or groups, clustered to a lesser extent. We apply this method to two real-life data sets and compare the results with those of the nongrouping and fully grouped methods in terms of recommendation accuracy and scalability. The results show that if such adaptive clustering is done properly, this method reduces the recommendation error rates for the tail items, while maintaining reasonable computational performance. |
doi_str_mv | 10.1109/TKDE.2012.119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2012_119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6226399</ieee_id><sourcerecordid>3031336031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-682cb4605d9d2d0e20f1a542e81bb0cbdbcafd324905df5da5a2d1f2cecc56c3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEuPjyIlLJM4dcZq0zXEa40MMDUHvVZo4rNO6jKRD2r8n0xAn-7Ue29JDyA2wMQBT9_Xrw2zMGfAU1QkZgZRVxkHBaeqZgEzkojwnFzGuGGNVWcGILOol0onV26H7QTpd7-KAodt80Tcclt5S5wMdEjL3aVbrbk3fg2_X2FPv6Aca3_e4sRjo5z5t9vGKnDm9jnj9Vy9J_Tirp8_ZfPH0Mp3MM8MrOWRFxU0rCiatstwy5MyBloJjBW3LTGtbo53NuVAJcdJqqbkFxw0aIwuTX5K749lt8N87jEOz8ruwSR8bEJAL4GVRJio7Uib4GAO6Zhu6Xod9A6w5KGsOypqDshRV4m-PfIeI_2zBeZErlf8CVqZnng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1413412767</pqid></control><display><type>article</type><title>The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Yoon-Joo</creator><creatorcontrib>Park, Yoon-Joo</creatorcontrib><description>This is a study of the long tail problem of recommender systems when many items in the long tail have only a few ratings, thus making it hard to use them in recommender systems. The approach presented in this paper clusters items according to their popularities, so that the recommendations for tail items are based on the ratings in more intensively clustered groups and for the head items are based on the ratings of individual items or groups, clustered to a lesser extent. We apply this method to two real-life data sets and compare the results with those of the nongrouping and fully grouped methods in terms of recommendation accuracy and scalability. The results show that if such adaptive clustering is done properly, this method reduces the recommendation error rates for the tail items, while maintaining reasonable computational performance.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2012.119</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive clustering ; Clustering ; k-nearest neighbors ; Long tail problem ; Nearest neighbor problems ; Recommender systems</subject><ispartof>IEEE transactions on knowledge and data engineering, 2013-08, Vol.25 (8), p.1904-1915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-682cb4605d9d2d0e20f1a542e81bb0cbdbcafd324905df5da5a2d1f2cecc56c3</citedby><cites>FETCH-LOGICAL-c285t-682cb4605d9d2d0e20f1a542e81bb0cbdbcafd324905df5da5a2d1f2cecc56c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6226399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6226399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Yoon-Joo</creatorcontrib><title>The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>This is a study of the long tail problem of recommender systems when many items in the long tail have only a few ratings, thus making it hard to use them in recommender systems. The approach presented in this paper clusters items according to their popularities, so that the recommendations for tail items are based on the ratings in more intensively clustered groups and for the head items are based on the ratings of individual items or groups, clustered to a lesser extent. We apply this method to two real-life data sets and compare the results with those of the nongrouping and fully grouped methods in terms of recommendation accuracy and scalability. The results show that if such adaptive clustering is done properly, this method reduces the recommendation error rates for the tail items, while maintaining reasonable computational performance.</description><subject>adaptive clustering</subject><subject>Clustering</subject><subject>k-nearest neighbors</subject><subject>Long tail problem</subject><subject>Nearest neighbor problems</subject><subject>Recommender systems</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEuPjyIlLJM4dcZq0zXEa40MMDUHvVZo4rNO6jKRD2r8n0xAn-7Ue29JDyA2wMQBT9_Xrw2zMGfAU1QkZgZRVxkHBaeqZgEzkojwnFzGuGGNVWcGILOol0onV26H7QTpd7-KAodt80Tcclt5S5wMdEjL3aVbrbk3fg2_X2FPv6Aca3_e4sRjo5z5t9vGKnDm9jnj9Vy9J_Tirp8_ZfPH0Mp3MM8MrOWRFxU0rCiatstwy5MyBloJjBW3LTGtbo53NuVAJcdJqqbkFxw0aIwuTX5K749lt8N87jEOz8ruwSR8bEJAL4GVRJio7Uib4GAO6Zhu6Xod9A6w5KGsOypqDshRV4m-PfIeI_2zBeZErlf8CVqZnng</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Park, Yoon-Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems</title><author>Park, Yoon-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-682cb4605d9d2d0e20f1a542e81bb0cbdbcafd324905df5da5a2d1f2cecc56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptive clustering</topic><topic>Clustering</topic><topic>k-nearest neighbors</topic><topic>Long tail problem</topic><topic>Nearest neighbor problems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Yoon-Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Yoon-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2013-08</date><risdate>2013</risdate><volume>25</volume><issue>8</issue><spage>1904</spage><epage>1915</epage><pages>1904-1915</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>This is a study of the long tail problem of recommender systems when many items in the long tail have only a few ratings, thus making it hard to use them in recommender systems. The approach presented in this paper clusters items according to their popularities, so that the recommendations for tail items are based on the ratings in more intensively clustered groups and for the head items are based on the ratings of individual items or groups, clustered to a lesser extent. We apply this method to two real-life data sets and compare the results with those of the nongrouping and fully grouped methods in terms of recommendation accuracy and scalability. The results show that if such adaptive clustering is done properly, this method reduces the recommendation error rates for the tail items, while maintaining reasonable computational performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2012.119</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2013-08, Vol.25 (8), p.1904-1915 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2012_119 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive clustering Clustering k-nearest neighbors Long tail problem Nearest neighbor problems Recommender systems |
title | The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Adaptive%20Clustering%20Method%20for%20the%20Long%20Tail%20Problem%20of%20Recommender%20Systems&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Park,%20Yoon-Joo&rft.date=2013-08&rft.volume=25&rft.issue=8&rft.spage=1904&rft.epage=1915&rft.pages=1904-1915&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2012.119&rft_dat=%3Cproquest_RIE%3E3031336031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1413412767&rft_id=info:pmid/&rft_ieee_id=6226399&rfr_iscdi=true |