Unsupervised Multiway Data Analysis: A Literature Survey
Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2009-01, Vol.21 (1), p.6-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 21 |
creator | Acar, E. Yener, B. |
description | Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision. |
doi_str_mv | 10.1109/TKDE.2008.112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2008_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4538221</ieee_id><sourcerecordid>34644650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgCs7p0ZOXIqinzrxpkibexjY_cOLB7VzSNIWMrptJO-l_b8rGDh48JS_55YH3Qega8AgAy8fF-3Q2IhiLMJITNADGRExAwmm4YwoxTWh6ji68X-GgUgEDJJa1b7fG7aw3RfTRVo39UV00VY2KxrWqOm_9UzSO5rYxTjWtM9FX63amu0Rnpaq8uTqcQ7R8ni0mr_H88-VtMp7HmhHexBRrSfOcF6xUgqSEySKXPCmJJAUnipWQ58RooWjOjOYgGKWYaV6CEILnZTJED_vcrdt8t8Y32dp6bapK1WbT-kykDIPgBAd5_69MKKeUsx7e_oGrTevCsj6TEIKAUAgo3iPtNt47U2ZbZ9fKdRngrK876-vO-rrDSIK_O4Qqr1VVOlVr64-fCJYixTIN7mbvrDHm-ExZIgiB5BfeGYYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912031241</pqid></control><display><type>article</type><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Acar, E. ; Yener, B.</creator><creatorcontrib>Acar, E. ; Yener, B.</creatorcontrib><description>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2008.112</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Chemical analysis ; Computer science; control theory; systems ; Context modeling ; Data analysis ; Data mining ; Data processing ; Data processing. List processing. Character string processing ; Electroencephalography ; Exact sciences and technology ; Frequency domain analysis ; Information analysis ; Introductory and Survey ; Mathematical analysis ; Mathematical models ; Matrices ; Matrix methods ; Memory organisation. Data processing ; Mining methods and algorithms ; Neuroscience ; Singular value decomposition ; Social network services ; Software ; Tensile stress ; Texts</subject><ispartof>IEEE transactions on knowledge and data engineering, 2009-01, Vol.21 (1), p.6-20</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</citedby><cites>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4538221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4538221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20987097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Chemical analysis</subject><subject>Computer science; control theory; systems</subject><subject>Context modeling</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Data processing. List processing. Character string processing</subject><subject>Electroencephalography</subject><subject>Exact sciences and technology</subject><subject>Frequency domain analysis</subject><subject>Information analysis</subject><subject>Introductory and Survey</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Memory organisation. Data processing</subject><subject>Mining methods and algorithms</subject><subject>Neuroscience</subject><subject>Singular value decomposition</subject><subject>Social network services</subject><subject>Software</subject><subject>Tensile stress</subject><subject>Texts</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90M1LwzAYBvAgCs7p0ZOXIqinzrxpkibexjY_cOLB7VzSNIWMrptJO-l_b8rGDh48JS_55YH3Qega8AgAy8fF-3Q2IhiLMJITNADGRExAwmm4YwoxTWh6ji68X-GgUgEDJJa1b7fG7aw3RfTRVo39UV00VY2KxrWqOm_9UzSO5rYxTjWtM9FX63amu0Rnpaq8uTqcQ7R8ni0mr_H88-VtMp7HmhHexBRrSfOcF6xUgqSEySKXPCmJJAUnipWQ58RooWjOjOYgGKWYaV6CEILnZTJED_vcrdt8t8Y32dp6bapK1WbT-kykDIPgBAd5_69MKKeUsx7e_oGrTevCsj6TEIKAUAgo3iPtNt47U2ZbZ9fKdRngrK876-vO-rrDSIK_O4Qqr1VVOlVr64-fCJYixTIN7mbvrDHm-ExZIgiB5BfeGYYW</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Acar, E.</creator><creator>Yener, B.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><author>Acar, E. ; Yener, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Chemical analysis</topic><topic>Computer science; control theory; systems</topic><topic>Context modeling</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Data processing. List processing. Character string processing</topic><topic>Electroencephalography</topic><topic>Exact sciences and technology</topic><topic>Frequency domain analysis</topic><topic>Information analysis</topic><topic>Introductory and Survey</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Memory organisation. Data processing</topic><topic>Mining methods and algorithms</topic><topic>Neuroscience</topic><topic>Singular value decomposition</topic><topic>Social network services</topic><topic>Software</topic><topic>Tensile stress</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Acar, E.</au><au>Yener, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Multiway Data Analysis: A Literature Survey</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2009-01</date><risdate>2009</risdate><volume>21</volume><issue>1</issue><spage>6</spage><epage>20</epage><pages>6-20</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TKDE.2008.112</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2009-01, Vol.21 (1), p.6-20 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2008_112 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arrays Chemical analysis Computer science control theory systems Context modeling Data analysis Data mining Data processing Data processing. List processing. Character string processing Electroencephalography Exact sciences and technology Frequency domain analysis Information analysis Introductory and Survey Mathematical analysis Mathematical models Matrices Matrix methods Memory organisation. Data processing Mining methods and algorithms Neuroscience Singular value decomposition Social network services Software Tensile stress Texts |
title | Unsupervised Multiway Data Analysis: A Literature Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Multiway%20Data%20Analysis:%20A%20Literature%20Survey&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Acar,%20E.&rft.date=2009-01&rft.volume=21&rft.issue=1&rft.spage=6&rft.epage=20&rft.pages=6-20&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2008.112&rft_dat=%3Cproquest_RIE%3E34644650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912031241&rft_id=info:pmid/&rft_ieee_id=4538221&rfr_iscdi=true |