Unsupervised Multiway Data Analysis: A Literature Survey

Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2009-01, Vol.21 (1), p.6-20
Hauptverfasser: Acar, E., Yener, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 6
container_title IEEE transactions on knowledge and data engineering
container_volume 21
creator Acar, E.
Yener, B.
description Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.
doi_str_mv 10.1109/TKDE.2008.112
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2008_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4538221</ieee_id><sourcerecordid>34644650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgCs7p0ZOXIqinzrxpkibexjY_cOLB7VzSNIWMrptJO-l_b8rGDh48JS_55YH3Qega8AgAy8fF-3Q2IhiLMJITNADGRExAwmm4YwoxTWh6ji68X-GgUgEDJJa1b7fG7aw3RfTRVo39UV00VY2KxrWqOm_9UzSO5rYxTjWtM9FX63amu0Rnpaq8uTqcQ7R8ni0mr_H88-VtMp7HmhHexBRrSfOcF6xUgqSEySKXPCmJJAUnipWQ58RooWjOjOYgGKWYaV6CEILnZTJED_vcrdt8t8Y32dp6bapK1WbT-kykDIPgBAd5_69MKKeUsx7e_oGrTevCsj6TEIKAUAgo3iPtNt47U2ZbZ9fKdRngrK876-vO-rrDSIK_O4Qqr1VVOlVr64-fCJYixTIN7mbvrDHm-ExZIgiB5BfeGYYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912031241</pqid></control><display><type>article</type><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Acar, E. ; Yener, B.</creator><creatorcontrib>Acar, E. ; Yener, B.</creatorcontrib><description>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2008.112</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Chemical analysis ; Computer science; control theory; systems ; Context modeling ; Data analysis ; Data mining ; Data processing ; Data processing. List processing. Character string processing ; Electroencephalography ; Exact sciences and technology ; Frequency domain analysis ; Information analysis ; Introductory and Survey ; Mathematical analysis ; Mathematical models ; Matrices ; Matrix methods ; Memory organisation. Data processing ; Mining methods and algorithms ; Neuroscience ; Singular value decomposition ; Social network services ; Software ; Tensile stress ; Texts</subject><ispartof>IEEE transactions on knowledge and data engineering, 2009-01, Vol.21 (1), p.6-20</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</citedby><cites>FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4538221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4538221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20987097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Chemical analysis</subject><subject>Computer science; control theory; systems</subject><subject>Context modeling</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Data processing. List processing. Character string processing</subject><subject>Electroencephalography</subject><subject>Exact sciences and technology</subject><subject>Frequency domain analysis</subject><subject>Information analysis</subject><subject>Introductory and Survey</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Memory organisation. Data processing</subject><subject>Mining methods and algorithms</subject><subject>Neuroscience</subject><subject>Singular value decomposition</subject><subject>Social network services</subject><subject>Software</subject><subject>Tensile stress</subject><subject>Texts</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90M1LwzAYBvAgCs7p0ZOXIqinzrxpkibexjY_cOLB7VzSNIWMrptJO-l_b8rGDh48JS_55YH3Qega8AgAy8fF-3Q2IhiLMJITNADGRExAwmm4YwoxTWh6ji68X-GgUgEDJJa1b7fG7aw3RfTRVo39UV00VY2KxrWqOm_9UzSO5rYxTjWtM9FX63amu0Rnpaq8uTqcQ7R8ni0mr_H88-VtMp7HmhHexBRrSfOcF6xUgqSEySKXPCmJJAUnipWQ58RooWjOjOYgGKWYaV6CEILnZTJED_vcrdt8t8Y32dp6bapK1WbT-kykDIPgBAd5_69MKKeUsx7e_oGrTevCsj6TEIKAUAgo3iPtNt47U2ZbZ9fKdRngrK876-vO-rrDSIK_O4Qqr1VVOlVr64-fCJYixTIN7mbvrDHm-ExZIgiB5BfeGYYW</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Acar, E.</creator><creator>Yener, B.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Unsupervised Multiway Data Analysis: A Literature Survey</title><author>Acar, E. ; Yener, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-40c94bb6d5fa827259db963f292d62a5f1bb2ec8a4b5ec61854405c6f18886bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Chemical analysis</topic><topic>Computer science; control theory; systems</topic><topic>Context modeling</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Data processing. List processing. Character string processing</topic><topic>Electroencephalography</topic><topic>Exact sciences and technology</topic><topic>Frequency domain analysis</topic><topic>Information analysis</topic><topic>Introductory and Survey</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Memory organisation. Data processing</topic><topic>Mining methods and algorithms</topic><topic>Neuroscience</topic><topic>Singular value decomposition</topic><topic>Social network services</topic><topic>Software</topic><topic>Tensile stress</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Acar, E.</au><au>Yener, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Multiway Data Analysis: A Literature Survey</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2009-01</date><risdate>2009</risdate><volume>21</volume><issue>1</issue><spage>6</spage><epage>20</epage><pages>6-20</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Two-way arrays or matrices are often not enough to represent all the information in the data and standard two-way analysis techniques commonly applied on matrices may fail to find the underlying structures in multi-modal datasets. Multiway data analysis has recently become popular as an exploratory analysis tool in discovering the structures in higher-order datasets, where data have more than two modes. We provide a review of significant contributions in the literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, social network analysis, text mining and computer vision.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TKDE.2008.112</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2009-01, Vol.21 (1), p.6-20
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2008_112
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Chemical analysis
Computer science
control theory
systems
Context modeling
Data analysis
Data mining
Data processing
Data processing. List processing. Character string processing
Electroencephalography
Exact sciences and technology
Frequency domain analysis
Information analysis
Introductory and Survey
Mathematical analysis
Mathematical models
Matrices
Matrix methods
Memory organisation. Data processing
Mining methods and algorithms
Neuroscience
Singular value decomposition
Social network services
Software
Tensile stress
Texts
title Unsupervised Multiway Data Analysis: A Literature Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Multiway%20Data%20Analysis:%20A%20Literature%20Survey&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Acar,%20E.&rft.date=2009-01&rft.volume=21&rft.issue=1&rft.spage=6&rft.epage=20&rft.pages=6-20&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2008.112&rft_dat=%3Cproquest_RIE%3E34644650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912031241&rft_id=info:pmid/&rft_ieee_id=4538221&rfr_iscdi=true