Protection of Database Security via Collaborative Inference Detection

Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2008-08, Vol.20 (8), p.1013-1027
Hauptverfasser: Yu Chen, Chu, W.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027
container_issue 8
container_start_page 1013
container_title IEEE transactions on knowledge and data engineering
container_volume 20
creator Yu Chen
Chu, W.W.
description Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.
doi_str_mv 10.1109/TKDE.2007.190642
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2007_190642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358939</ieee_id><sourcerecordid>34656481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuAgCtbqXfASPIiX1J3sR7JHaasWCwrW8zLZTiClzdbdpNB_b0LEgwdPO4fnHWbfKLoGNgFg-mH1OptPUsayCWimRHoSjUDKPElBw2k3MwGJ4CI7jy5C2DDG8iyHUTR_964h21Sujl0Zz7DBAgPFH2RbXzXH-FBhPHXbLRbOY1MdKF7UJXmqLcUz-oleRmclbgNd_bzj6PNpvpq-JMu358X0cZlYLkWTyJyQqxQEaVBMaeQSiyKza22FZlZnShVFRwGRQHJaC2QiU0KiLBFtxsfR3bB3791XS6ExuypY6q6rybXBcKGkEjl08P5fCCqDlIPmPb39Qzeu9XX3DaM7w3iqesQGZL0LwVNp9r7aoT8aYKbv3_T9m75_M_TfRW6GSEVEv1xwmWuu-Tdv7X_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912303261</pqid></control><display><type>article</type><title>Protection of Database Security via Collaborative Inference Detection</title><source>IEEE/IET Electronic Library (IEL) - Journals and E-Books</source><creator>Yu Chen ; Chu, W.W.</creator><creatorcontrib>Yu Chen ; Chu, W.W.</creatorcontrib><description>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2007.190642</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Collaboration ; Collaborative work ; Computer information security ; Data security ; History ; Inference ; Inference engines ; Information security ; Mathematical models ; Operating systems ; Privacy ; Probability ; Protection ; Query processing ; Security and Privacy Protection ; Semantics ; SIM</subject><ispartof>IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1013-1027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</citedby><cites>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Chen</creatorcontrib><creatorcontrib>Chu, W.W.</creatorcontrib><title>Protection of Database Security via Collaborative Inference Detection</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</description><subject>Channels</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Computer information security</subject><subject>Data security</subject><subject>History</subject><subject>Inference</subject><subject>Inference engines</subject><subject>Information security</subject><subject>Mathematical models</subject><subject>Operating systems</subject><subject>Privacy</subject><subject>Probability</subject><subject>Protection</subject><subject>Query processing</subject><subject>Security and Privacy Protection</subject><subject>Semantics</subject><subject>SIM</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90E1Lw0AQBuAgCtbqXfASPIiX1J3sR7JHaasWCwrW8zLZTiClzdbdpNB_b0LEgwdPO4fnHWbfKLoGNgFg-mH1OptPUsayCWimRHoSjUDKPElBw2k3MwGJ4CI7jy5C2DDG8iyHUTR_964h21Sujl0Zz7DBAgPFH2RbXzXH-FBhPHXbLRbOY1MdKF7UJXmqLcUz-oleRmclbgNd_bzj6PNpvpq-JMu358X0cZlYLkWTyJyQqxQEaVBMaeQSiyKza22FZlZnShVFRwGRQHJaC2QiU0KiLBFtxsfR3bB3791XS6ExuypY6q6rybXBcKGkEjl08P5fCCqDlIPmPb39Qzeu9XX3DaM7w3iqesQGZL0LwVNp9r7aoT8aYKbv3_T9m75_M_TfRW6GSEVEv1xwmWuu-Tdv7X_1</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Yu Chen</creator><creator>Chu, W.W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Protection of Database Security via Collaborative Inference Detection</title><author>Yu Chen ; Chu, W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Channels</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Computer information security</topic><topic>Data security</topic><topic>History</topic><topic>Inference</topic><topic>Inference engines</topic><topic>Information security</topic><topic>Mathematical models</topic><topic>Operating systems</topic><topic>Privacy</topic><topic>Probability</topic><topic>Protection</topic><topic>Query processing</topic><topic>Security and Privacy Protection</topic><topic>Semantics</topic><topic>SIM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Chen</creatorcontrib><creatorcontrib>Chu, W.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Chen</au><au>Chu, W.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of Database Security via Collaborative Inference Detection</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>20</volume><issue>8</issue><spage>1013</spage><epage>1027</epage><pages>1013-1027</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2007.190642</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1013-1027
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2007_190642
source IEEE/IET Electronic Library (IEL) - Journals and E-Books
subjects Channels
Collaboration
Collaborative work
Computer information security
Data security
History
Inference
Inference engines
Information security
Mathematical models
Operating systems
Privacy
Probability
Protection
Query processing
Security and Privacy Protection
Semantics
SIM
title Protection of Database Security via Collaborative Inference Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20Database%20Security%20via%20Collaborative%20Inference%20Detection&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Yu%20Chen&rft.date=2008-08-01&rft.volume=20&rft.issue=8&rft.spage=1013&rft.epage=1027&rft.pages=1013-1027&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2007.190642&rft_dat=%3Cproquest_RIE%3E34656481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912303261&rft_id=info:pmid/&rft_ieee_id=4358939&rfr_iscdi=true