Protection of Database Security via Collaborative Inference Detection
Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2008-08, Vol.20 (8), p.1013-1027 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 8 |
container_start_page | 1013 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 20 |
creator | Yu Chen Chu, W.W. |
description | Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference. |
doi_str_mv | 10.1109/TKDE.2007.190642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2007_190642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358939</ieee_id><sourcerecordid>34656481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuAgCtbqXfASPIiX1J3sR7JHaasWCwrW8zLZTiClzdbdpNB_b0LEgwdPO4fnHWbfKLoGNgFg-mH1OptPUsayCWimRHoSjUDKPElBw2k3MwGJ4CI7jy5C2DDG8iyHUTR_964h21Sujl0Zz7DBAgPFH2RbXzXH-FBhPHXbLRbOY1MdKF7UJXmqLcUz-oleRmclbgNd_bzj6PNpvpq-JMu358X0cZlYLkWTyJyQqxQEaVBMaeQSiyKza22FZlZnShVFRwGRQHJaC2QiU0KiLBFtxsfR3bB3791XS6ExuypY6q6rybXBcKGkEjl08P5fCCqDlIPmPb39Qzeu9XX3DaM7w3iqesQGZL0LwVNp9r7aoT8aYKbv3_T9m75_M_TfRW6GSEVEv1xwmWuu-Tdv7X_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912303261</pqid></control><display><type>article</type><title>Protection of Database Security via Collaborative Inference Detection</title><source>IEEE/IET Electronic Library (IEL) - Journals and E-Books</source><creator>Yu Chen ; Chu, W.W.</creator><creatorcontrib>Yu Chen ; Chu, W.W.</creatorcontrib><description>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2007.190642</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Collaboration ; Collaborative work ; Computer information security ; Data security ; History ; Inference ; Inference engines ; Information security ; Mathematical models ; Operating systems ; Privacy ; Probability ; Protection ; Query processing ; Security and Privacy Protection ; Semantics ; SIM</subject><ispartof>IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1013-1027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</citedby><cites>FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Chen</creatorcontrib><creatorcontrib>Chu, W.W.</creatorcontrib><title>Protection of Database Security via Collaborative Inference Detection</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</description><subject>Channels</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Computer information security</subject><subject>Data security</subject><subject>History</subject><subject>Inference</subject><subject>Inference engines</subject><subject>Information security</subject><subject>Mathematical models</subject><subject>Operating systems</subject><subject>Privacy</subject><subject>Probability</subject><subject>Protection</subject><subject>Query processing</subject><subject>Security and Privacy Protection</subject><subject>Semantics</subject><subject>SIM</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90E1Lw0AQBuAgCtbqXfASPIiX1J3sR7JHaasWCwrW8zLZTiClzdbdpNB_b0LEgwdPO4fnHWbfKLoGNgFg-mH1OptPUsayCWimRHoSjUDKPElBw2k3MwGJ4CI7jy5C2DDG8iyHUTR_964h21Sujl0Zz7DBAgPFH2RbXzXH-FBhPHXbLRbOY1MdKF7UJXmqLcUz-oleRmclbgNd_bzj6PNpvpq-JMu358X0cZlYLkWTyJyQqxQEaVBMaeQSiyKza22FZlZnShVFRwGRQHJaC2QiU0KiLBFtxsfR3bB3791XS6ExuypY6q6rybXBcKGkEjl08P5fCCqDlIPmPb39Qzeu9XX3DaM7w3iqesQGZL0LwVNp9r7aoT8aYKbv3_T9m75_M_TfRW6GSEVEv1xwmWuu-Tdv7X_1</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Yu Chen</creator><creator>Chu, W.W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Protection of Database Security via Collaborative Inference Detection</title><author>Yu Chen ; Chu, W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-58ea36214e916069a35abb7cd9c490c9766bbc351aae153ed4a047645a5faac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Channels</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Computer information security</topic><topic>Data security</topic><topic>History</topic><topic>Inference</topic><topic>Inference engines</topic><topic>Information security</topic><topic>Mathematical models</topic><topic>Operating systems</topic><topic>Privacy</topic><topic>Probability</topic><topic>Protection</topic><topic>Query processing</topic><topic>Security and Privacy Protection</topic><topic>Semantics</topic><topic>SIM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Chen</creatorcontrib><creatorcontrib>Chu, W.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Chen</au><au>Chu, W.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of Database Security via Collaborative Inference Detection</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>20</volume><issue>8</issue><spage>1013</spage><epage>1027</epage><pages>1013-1027</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge, we constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the prespecified threshold. For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2007.190642</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1013-1027 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2007_190642 |
source | IEEE/IET Electronic Library (IEL) - Journals and E-Books |
subjects | Channels Collaboration Collaborative work Computer information security Data security History Inference Inference engines Information security Mathematical models Operating systems Privacy Probability Protection Query processing Security and Privacy Protection Semantics SIM |
title | Protection of Database Security via Collaborative Inference Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20Database%20Security%20via%20Collaborative%20Inference%20Detection&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Yu%20Chen&rft.date=2008-08-01&rft.volume=20&rft.issue=8&rft.spage=1013&rft.epage=1027&rft.pages=1013-1027&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2007.190642&rft_dat=%3Cproquest_RIE%3E34656481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912303261&rft_id=info:pmid/&rft_ieee_id=4358939&rfr_iscdi=true |