Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study
With the rapid development of intelligent vehicles and Advanced Driver-Assistance Systems (ADAS), a new trend is that mixed levels of human driver engagements will be involved in the transportation system. Therefore, necessary visual guidance for drivers is vitally important under this situation to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2022-06, Vol.7 (2), p.210-220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | 2 |
container_start_page | 210 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 7 |
creator | Liu, Yongkang Wang, Ziran Han, Kyungtae Shou, Zhenyu Tiwari, Prashant Hansen, John H. L. |
description | With the rapid development of intelligent vehicles and Advanced Driver-Assistance Systems (ADAS), a new trend is that mixed levels of human driver engagements will be involved in the transportation system. Therefore, necessary visual guidance for drivers is vitally important under this situation to prevent potential risks. To advance the development of visual guidance systems, we introduce a novel vision-cloud data fusion methodology, integrating camera image and Digital Twin information from the cloud to help intelligent vehicles make better decisions. Target vehicle bounding box is drawn and matched with the help of the object detector (running on the ego-vehicle) and position information (received from the cloud). The best matching result, a 79.2% accuracy under 0.7 intersection over union threshold, is obtained with depth images served as an additional feature source. A case study on lane change prediction is conducted to show the effectiveness of the proposed data fusion methodology. In the case study, a multi-layer perceptron algorithm is proposed with modified lane change prediction approaches. Human-in-the-loop simulation results obtained from the Unity game engine reveal that the proposed model can improve highway driving performance significantly in terms of safety, comfort, and environmental sustainability. |
doi_str_mv | 10.1109/TIV.2021.3103695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2021_3103695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511277</ieee_id><sourcerecordid>2688684588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-40bf2733d3cb98c01e0bb596a9c81db14451912be9d6e613c18257556fd996343</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOObugpeA5868pEkTb6VzKgwUNncNaZJqx2xn0h7239uy6en9eHy_9-BD6BbIHICoh83rdk4JhTkDwoTiF2hCWaYSqUh6-Zcll9doFuOOEAJCUknUBC23dazbJin2be_wwnQGL_txg6s24HyRrx9xjlem8bj4Ms2nx-_Bu9p2I1KY6PG6693xBl1VZh_97Dyn6GP5tClektXb82uRrxJLFXRJSsqKZow5ZkslLQFPypIrYZSV4EpIUw4KaOmVE14AsyApzzgXlVNKsJRN0f3p7iG0P72Pnd61fWiGl5oKKYVMuZQDRU6UDW2MwVf6EOpvE44aiB6F6UGYHoXps7Chcneq1N77f1xxAJpl7BcI8GMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688684588</pqid></control><display><type>article</type><title>Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yongkang ; Wang, Ziran ; Han, Kyungtae ; Shou, Zhenyu ; Tiwari, Prashant ; Hansen, John H. L.</creator><creatorcontrib>Liu, Yongkang ; Wang, Ziran ; Han, Kyungtae ; Shou, Zhenyu ; Tiwari, Prashant ; Hansen, John H. L.</creatorcontrib><description>With the rapid development of intelligent vehicles and Advanced Driver-Assistance Systems (ADAS), a new trend is that mixed levels of human driver engagements will be involved in the transportation system. Therefore, necessary visual guidance for drivers is vitally important under this situation to prevent potential risks. To advance the development of visual guidance systems, we introduce a novel vision-cloud data fusion methodology, integrating camera image and Digital Twin information from the cloud to help intelligent vehicles make better decisions. Target vehicle bounding box is drawn and matched with the help of the object detector (running on the ego-vehicle) and position information (received from the cloud). The best matching result, a 79.2% accuracy under 0.7 intersection over union threshold, is obtained with depth images served as an additional feature source. A case study on lane change prediction is conducted to show the effectiveness of the proposed data fusion methodology. In the case study, a multi-layer perceptron algorithm is proposed with modified lane change prediction approaches. Human-in-the-loop simulation results obtained from the Unity game engine reveal that the proposed model can improve highway driving performance significantly in terms of safety, comfort, and environmental sustainability.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2021.3103695</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>ADAS ; Advanced driver assistance systems ; Algorithms ; Cameras ; Case studies ; Cloud computing ; computer vision ; data fusion ; Data integration ; Digital imaging ; Digital twin ; Guidance systems ; Intelligent vehicles ; lane change ; Lane changing ; Multilayer perceptrons ; Multilayers ; Object detection ; Prediction algorithms ; Transportation systems ; Vehicles ; Vision</subject><ispartof>IEEE transactions on intelligent vehicles, 2022-06, Vol.7 (2), p.210-220</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-40bf2733d3cb98c01e0bb596a9c81db14451912be9d6e613c18257556fd996343</citedby><cites>FETCH-LOGICAL-c291t-40bf2733d3cb98c01e0bb596a9c81db14451912be9d6e613c18257556fd996343</cites><orcidid>0000-0003-2702-7150 ; 0000-0001-8291-5025 ; 0000-0001-6677-5122 ; 0000-0003-1382-9929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yongkang</creatorcontrib><creatorcontrib>Wang, Ziran</creatorcontrib><creatorcontrib>Han, Kyungtae</creatorcontrib><creatorcontrib>Shou, Zhenyu</creatorcontrib><creatorcontrib>Tiwari, Prashant</creatorcontrib><creatorcontrib>Hansen, John H. L.</creatorcontrib><title>Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>With the rapid development of intelligent vehicles and Advanced Driver-Assistance Systems (ADAS), a new trend is that mixed levels of human driver engagements will be involved in the transportation system. Therefore, necessary visual guidance for drivers is vitally important under this situation to prevent potential risks. To advance the development of visual guidance systems, we introduce a novel vision-cloud data fusion methodology, integrating camera image and Digital Twin information from the cloud to help intelligent vehicles make better decisions. Target vehicle bounding box is drawn and matched with the help of the object detector (running on the ego-vehicle) and position information (received from the cloud). The best matching result, a 79.2% accuracy under 0.7 intersection over union threshold, is obtained with depth images served as an additional feature source. A case study on lane change prediction is conducted to show the effectiveness of the proposed data fusion methodology. In the case study, a multi-layer perceptron algorithm is proposed with modified lane change prediction approaches. Human-in-the-loop simulation results obtained from the Unity game engine reveal that the proposed model can improve highway driving performance significantly in terms of safety, comfort, and environmental sustainability.</description><subject>ADAS</subject><subject>Advanced driver assistance systems</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Case studies</subject><subject>Cloud computing</subject><subject>computer vision</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Digital imaging</subject><subject>Digital twin</subject><subject>Guidance systems</subject><subject>Intelligent vehicles</subject><subject>lane change</subject><subject>Lane changing</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Object detection</subject><subject>Prediction algorithms</subject><subject>Transportation systems</subject><subject>Vehicles</subject><subject>Vision</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOObugpeA5868pEkTb6VzKgwUNncNaZJqx2xn0h7239uy6en9eHy_9-BD6BbIHICoh83rdk4JhTkDwoTiF2hCWaYSqUh6-Zcll9doFuOOEAJCUknUBC23dazbJin2be_wwnQGL_txg6s24HyRrx9xjlem8bj4Ms2nx-_Bu9p2I1KY6PG6693xBl1VZh_97Dyn6GP5tClektXb82uRrxJLFXRJSsqKZow5ZkslLQFPypIrYZSV4EpIUw4KaOmVE14AsyApzzgXlVNKsJRN0f3p7iG0P72Pnd61fWiGl5oKKYVMuZQDRU6UDW2MwVf6EOpvE44aiB6F6UGYHoXps7Chcneq1N77f1xxAJpl7BcI8GMm</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liu, Yongkang</creator><creator>Wang, Ziran</creator><creator>Han, Kyungtae</creator><creator>Shou, Zhenyu</creator><creator>Tiwari, Prashant</creator><creator>Hansen, John H. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2702-7150</orcidid><orcidid>https://orcid.org/0000-0001-8291-5025</orcidid><orcidid>https://orcid.org/0000-0001-6677-5122</orcidid><orcidid>https://orcid.org/0000-0003-1382-9929</orcidid></search><sort><creationdate>20220601</creationdate><title>Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study</title><author>Liu, Yongkang ; Wang, Ziran ; Han, Kyungtae ; Shou, Zhenyu ; Tiwari, Prashant ; Hansen, John H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-40bf2733d3cb98c01e0bb596a9c81db14451912be9d6e613c18257556fd996343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ADAS</topic><topic>Advanced driver assistance systems</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Case studies</topic><topic>Cloud computing</topic><topic>computer vision</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Digital imaging</topic><topic>Digital twin</topic><topic>Guidance systems</topic><topic>Intelligent vehicles</topic><topic>lane change</topic><topic>Lane changing</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Object detection</topic><topic>Prediction algorithms</topic><topic>Transportation systems</topic><topic>Vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongkang</creatorcontrib><creatorcontrib>Wang, Ziran</creatorcontrib><creatorcontrib>Han, Kyungtae</creatorcontrib><creatorcontrib>Shou, Zhenyu</creatorcontrib><creatorcontrib>Tiwari, Prashant</creatorcontrib><creatorcontrib>Hansen, John H. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yongkang</au><au>Wang, Ziran</au><au>Han, Kyungtae</au><au>Shou, Zhenyu</au><au>Tiwari, Prashant</au><au>Hansen, John H. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>210</spage><epage>220</epage><pages>210-220</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>With the rapid development of intelligent vehicles and Advanced Driver-Assistance Systems (ADAS), a new trend is that mixed levels of human driver engagements will be involved in the transportation system. Therefore, necessary visual guidance for drivers is vitally important under this situation to prevent potential risks. To advance the development of visual guidance systems, we introduce a novel vision-cloud data fusion methodology, integrating camera image and Digital Twin information from the cloud to help intelligent vehicles make better decisions. Target vehicle bounding box is drawn and matched with the help of the object detector (running on the ego-vehicle) and position information (received from the cloud). The best matching result, a 79.2% accuracy under 0.7 intersection over union threshold, is obtained with depth images served as an additional feature source. A case study on lane change prediction is conducted to show the effectiveness of the proposed data fusion methodology. In the case study, a multi-layer perceptron algorithm is proposed with modified lane change prediction approaches. Human-in-the-loop simulation results obtained from the Unity game engine reveal that the proposed model can improve highway driving performance significantly in terms of safety, comfort, and environmental sustainability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2021.3103695</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2702-7150</orcidid><orcidid>https://orcid.org/0000-0001-8291-5025</orcidid><orcidid>https://orcid.org/0000-0001-6677-5122</orcidid><orcidid>https://orcid.org/0000-0003-1382-9929</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2022-06, Vol.7 (2), p.210-220 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIV_2021_3103695 |
source | IEEE Electronic Library (IEL) |
subjects | ADAS Advanced driver assistance systems Algorithms Cameras Case studies Cloud computing computer vision data fusion Data integration Digital imaging Digital twin Guidance systems Intelligent vehicles lane change Lane changing Multilayer perceptrons Multilayers Object detection Prediction algorithms Transportation systems Vehicles Vision |
title | Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Cloud%20Data%20Fusion%20for%20ADAS:%20A%20Lane%20Change%20Prediction%20Case%20Study&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Liu,%20Yongkang&rft.date=2022-06-01&rft.volume=7&rft.issue=2&rft.spage=210&rft.epage=220&rft.pages=210-220&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2021.3103695&rft_dat=%3Cproquest_RIE%3E2688684588%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688684588&rft_id=info:pmid/&rft_ieee_id=9511277&rfr_iscdi=true |