Computation of the Schläfli Function
The Schläfli function f_{n}(x) allows to compute volume of a regular (n-1) -dimensional spherical simplex of the dihedral angle 2\alpha = arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2025-02, Vol.71 (2), p.1481-1486 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 2 |
container_start_page | 1481 |
container_title | IEEE transactions on information theory |
container_volume | 71 |
creator | Shoom, Andrey A. |
description | The Schläfli function f_{n}(x) allows to compute volume of a regular (n-1) -dimensional spherical simplex of the dihedral angle 2\alpha = arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function f_{n}(x) for n\geq 4 in the frequently used in applications interval x\in [n-1,n+1] . The computation is based on the Chebyshev approximation of the function q_{n}(x) , which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method. |
doi_str_mv | 10.1109/TIT.2024.3511134 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2024_3511134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777526</ieee_id><sourcerecordid>10_1109_TIT_2024_3511134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</originalsourceid><addsrcrecordid>eNpNj71OwzAUhS0EEqFlZ2DIwphwr31txyOKaKlUiaHZrcSx1aC0qZJ04H14E16MRO3AdHR0fqSPsSeEFBHMa7EpUg6cUiERUdANi1BKnRgl6ZZFAJglhii7Zw_D8DVZksgj9pJ3h9N5LMemO8ZdiMe9j3du3_7-hLaJV-ejm5MluwtlO_jHqy5YsXov8o9k-7ne5G_bxCmukhCwylxQtQsGnOAlGW6MhBokd0oITlBpEKVztQ8Ec0UDUG18TdxUWiwYXG5d3w1D74M99c2h7L8tgp0p7URpZ0p7pZwmz5dJ473_V9daS67EH4FhTWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of the Schläfli Function</title><source>IEEE Electronic Library (IEL)</source><creator>Shoom, Andrey A.</creator><creatorcontrib>Shoom, Andrey A.</creatorcontrib><description><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2024.3511134</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Chebyshev approximation ; Hypercubes ; Indexes ; kissing number problem ; Lattices ; Microcomputers ; Physics ; quantizing problem ; Reviews ; Schläfli function ; sphere packing problem ; Upper bound ; Vectors</subject><ispartof>IEEE transactions on information theory, 2025-02, Vol.71 (2), p.1481-1486</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</cites><orcidid>0000-0002-1023-6207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shoom, Andrey A.</creatorcontrib><title>Computation of the Schläfli Function</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></description><subject>Accuracy</subject><subject>Chebyshev approximation</subject><subject>Hypercubes</subject><subject>Indexes</subject><subject>kissing number problem</subject><subject>Lattices</subject><subject>Microcomputers</subject><subject>Physics</subject><subject>quantizing problem</subject><subject>Reviews</subject><subject>Schläfli function</subject><subject>sphere packing problem</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71OwzAUhS0EEqFlZ2DIwphwr31txyOKaKlUiaHZrcSx1aC0qZJ04H14E16MRO3AdHR0fqSPsSeEFBHMa7EpUg6cUiERUdANi1BKnRgl6ZZFAJglhii7Zw_D8DVZksgj9pJ3h9N5LMemO8ZdiMe9j3du3_7-hLaJV-ejm5MluwtlO_jHqy5YsXov8o9k-7ne5G_bxCmukhCwylxQtQsGnOAlGW6MhBokd0oITlBpEKVztQ8Ec0UDUG18TdxUWiwYXG5d3w1D74M99c2h7L8tgp0p7URpZ0p7pZwmz5dJ473_V9daS67EH4FhTWg</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Shoom, Andrey A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-6207</orcidid></search><sort><creationdate>202502</creationdate><title>Computation of the Schläfli Function</title><author>Shoom, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Chebyshev approximation</topic><topic>Hypercubes</topic><topic>Indexes</topic><topic>kissing number problem</topic><topic>Lattices</topic><topic>Microcomputers</topic><topic>Physics</topic><topic>quantizing problem</topic><topic>Reviews</topic><topic>Schläfli function</topic><topic>sphere packing problem</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoom, Andrey A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoom, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the Schläfli Function</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2025-02</date><risdate>2025</risdate><volume>71</volume><issue>2</issue><spage>1481</spage><epage>1486</epage><pages>1481-1486</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></abstract><pub>IEEE</pub><doi>10.1109/TIT.2024.3511134</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1023-6207</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2025-02, Vol.71 (2), p.1481-1486 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2024_3511134 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Chebyshev approximation Hypercubes Indexes kissing number problem Lattices Microcomputers Physics quantizing problem Reviews Schläfli function sphere packing problem Upper bound Vectors |
title | Computation of the Schläfli Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20Schl%C3%A4fli%20Function&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Shoom,%20Andrey%20A.&rft.date=2025-02&rft.volume=71&rft.issue=2&rft.spage=1481&rft.epage=1486&rft.pages=1481-1486&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3511134&rft_dat=%3Ccrossref_RIE%3E10_1109_TIT_2024_3511134%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777526&rfr_iscdi=true |