Computation of the Schläfli Function

The Schläfli function f_{n}(x) allows to compute volume of a regular (n-1) -dimensional spherical simplex of the dihedral angle 2\alpha = arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2025-02, Vol.71 (2), p.1481-1486
1. Verfasser: Shoom, Andrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1486
container_issue 2
container_start_page 1481
container_title IEEE transactions on information theory
container_volume 71
creator Shoom, Andrey A.
description The Schläfli function f_{n}(x) allows to compute volume of a regular (n-1) -dimensional spherical simplex of the dihedral angle 2\alpha = arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function f_{n}(x) for n\geq 4 in the frequently used in applications interval x\in [n-1,n+1] . The computation is based on the Chebyshev approximation of the function q_{n}(x) , which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.
doi_str_mv 10.1109/TIT.2024.3511134
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2024_3511134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777526</ieee_id><sourcerecordid>10_1109_TIT_2024_3511134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</originalsourceid><addsrcrecordid>eNpNj71OwzAUhS0EEqFlZ2DIwphwr31txyOKaKlUiaHZrcSx1aC0qZJ04H14E16MRO3AdHR0fqSPsSeEFBHMa7EpUg6cUiERUdANi1BKnRgl6ZZFAJglhii7Zw_D8DVZksgj9pJ3h9N5LMemO8ZdiMe9j3du3_7-hLaJV-ejm5MluwtlO_jHqy5YsXov8o9k-7ne5G_bxCmukhCwylxQtQsGnOAlGW6MhBokd0oITlBpEKVztQ8Ec0UDUG18TdxUWiwYXG5d3w1D74M99c2h7L8tgp0p7URpZ0p7pZwmz5dJ473_V9daS67EH4FhTWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of the Schläfli Function</title><source>IEEE Electronic Library (IEL)</source><creator>Shoom, Andrey A.</creator><creatorcontrib>Shoom, Andrey A.</creatorcontrib><description><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2024.3511134</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Chebyshev approximation ; Hypercubes ; Indexes ; kissing number problem ; Lattices ; Microcomputers ; Physics ; quantizing problem ; Reviews ; Schläfli function ; sphere packing problem ; Upper bound ; Vectors</subject><ispartof>IEEE transactions on information theory, 2025-02, Vol.71 (2), p.1481-1486</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</cites><orcidid>0000-0002-1023-6207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shoom, Andrey A.</creatorcontrib><title>Computation of the Schläfli Function</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></description><subject>Accuracy</subject><subject>Chebyshev approximation</subject><subject>Hypercubes</subject><subject>Indexes</subject><subject>kissing number problem</subject><subject>Lattices</subject><subject>Microcomputers</subject><subject>Physics</subject><subject>quantizing problem</subject><subject>Reviews</subject><subject>Schläfli function</subject><subject>sphere packing problem</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71OwzAUhS0EEqFlZ2DIwphwr31txyOKaKlUiaHZrcSx1aC0qZJ04H14E16MRO3AdHR0fqSPsSeEFBHMa7EpUg6cUiERUdANi1BKnRgl6ZZFAJglhii7Zw_D8DVZksgj9pJ3h9N5LMemO8ZdiMe9j3du3_7-hLaJV-ejm5MluwtlO_jHqy5YsXov8o9k-7ne5G_bxCmukhCwylxQtQsGnOAlGW6MhBokd0oITlBpEKVztQ8Ec0UDUG18TdxUWiwYXG5d3w1D74M99c2h7L8tgp0p7URpZ0p7pZwmz5dJ473_V9daS67EH4FhTWg</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Shoom, Andrey A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-6207</orcidid></search><sort><creationdate>202502</creationdate><title>Computation of the Schläfli Function</title><author>Shoom, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-ff1b8cf6dcf90c32a4929950d052c633240b703accdef400c327004d9ed429b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Chebyshev approximation</topic><topic>Hypercubes</topic><topic>Indexes</topic><topic>kissing number problem</topic><topic>Lattices</topic><topic>Microcomputers</topic><topic>Physics</topic><topic>quantizing problem</topic><topic>Reviews</topic><topic>Schläfli function</topic><topic>sphere packing problem</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoom, Andrey A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoom, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the Schläfli Function</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2025-02</date><risdate>2025</risdate><volume>71</volume><issue>2</issue><spage>1481</spage><epage>1486</epage><pages>1481-1486</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[The Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> allows to compute volume of a regular <inline-formula> <tex-math notation="LaTeX">(n-1) </tex-math></inline-formula>-dimensional spherical simplex of the dihedral angle <inline-formula> <tex-math notation="LaTeX">2\alpha = </tex-math></inline-formula> arcsec(x) and it has many applications. For example, it defines conjectured upper bounds on the sphere packing problem and the kissing number problem, and a lower bound on the mean-squared error in the quantizing problem. The function is defined recursively via a first-order non-linear differential relation, that makes it difficult to compute, especially for large values of n. Here we present a method for an accurate numerical computation of the Schläfli function <inline-formula> <tex-math notation="LaTeX">f_{n}(x) </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">n\geq 4 </tex-math></inline-formula> in the frequently used in applications interval <inline-formula> <tex-math notation="LaTeX">x\in [n-1,n+1] </tex-math></inline-formula>. The computation is based on the Chebyshev approximation of the function <inline-formula> <tex-math notation="LaTeX">q_{n}(x) </tex-math></inline-formula>, which is related to the Schläfli function via a simple factor of an algebraic expression and regular in the interval. We also present the computation algorithm based on the method.]]></abstract><pub>IEEE</pub><doi>10.1109/TIT.2024.3511134</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1023-6207</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2025-02, Vol.71 (2), p.1481-1486
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2024_3511134
source IEEE Electronic Library (IEL)
subjects Accuracy
Chebyshev approximation
Hypercubes
Indexes
kissing number problem
Lattices
Microcomputers
Physics
quantizing problem
Reviews
Schläfli function
sphere packing problem
Upper bound
Vectors
title Computation of the Schläfli Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20Schl%C3%A4fli%20Function&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Shoom,%20Andrey%20A.&rft.date=2025-02&rft.volume=71&rft.issue=2&rft.spage=1481&rft.epage=1486&rft.pages=1481-1486&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3511134&rft_dat=%3Ccrossref_RIE%3E10_1109_TIT_2024_3511134%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777526&rfr_iscdi=true