Bent Partition, Vectorial Dual-Bent Function and LP-packing Constructions
We present secondary constructions of vectorial functions respectively partitions of elementary abelian groups, which simultaneously yield vectorial dual-bent functions with certain properties, bent partitions, and under some conditions, Latin square partial difference set packings (LP-packings). Fi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present secondary constructions of vectorial functions respectively partitions of elementary abelian groups, which simultaneously yield vectorial dual-bent functions with certain properties, bent partitions, and under some conditions, Latin square partial difference set packings (LP-packings). First, we analyse constructions via the direct sum of vectorial functions and then present a version of the generalized Maiorana-McFarland construction. Next, we generalize a construction of vectorial dual-bent functions by Wang, Fu, and Wei (2023). Finally, we use a lifting procedure of LP-packings from Jedwab and Li (2021) to construct vectorial dual-bent functions, bent partitions, and LP-packings in elementary abelian groups. With these constructions, a large variety of vectorial bent functions, bent partitions, LP-packings, and related amorphic association schemes can be obtained. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2024.3505600 |