The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys

This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models withou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-10, Vol.70 (10), p.6932-6949
Hauptverfasser: Wan, Kai, Sun, Hua, Ji, Mingyue, Mi, Tiebin, Caire, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6949
container_issue 10
container_start_page 6932
container_title IEEE transactions on information theory
container_volume 70
creator Wan, Kai
Sun, Hua
Ji, Mingyue
Mi, Tiebin
Caire, Giuseppe
description This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates from the users to the server in the two rounds of the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely \mathsf S users, where \mathsf S is a defined system parameter. The capacity region for the information theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition {\mathsf S}\gt {\mathsf K}-{\mathsf U} , where \mathsf K is the number of total users and \mathsf U is the designed minimum number of surviving users (which is another system parameter). In this paper we fully characterize the capacity region for this problem by matching a new converse bound and an achievable scheme. Experimental results over the Tencent Cloud show the improvement on the model aggregation tim
doi_str_mv 10.1109/TIT.2024.3393740
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2024_3393740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508398</ieee_id><sourcerecordid>10_1109_TIT_2024_3393740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-cf6b3c513afb555e999b0b289818a0b214fce9219c3b5cf9f87cef2f44db1f253</originalsourceid><addsrcrecordid>eNpNkE9PAjEUxBujiYjePXjoF1jsX-g7EqK4kcREl3jwsOmW16VGKGmXGL69S-Dgad7kzczhR8g9ZyPOGTxWZTUSTKiRlCAnil2QAdd6UsBYq0syYIybApQy1-Qm5-_eKs3FgHxVa6Qzu7MudAf6jm2IWxo9Lbc-po3tjraPxIRdcPQD3T4hnbZtwvb0_Azdmi63Lq5wRecp7ne_ISN9xUO-JVfe_mS8O-uQLJ-fqtlLsXibl7PponBCQ1c4P26k01xa32itEQAa1ggDhhvbH1x5hyA4ONlo58GbiUMvvFKrhnuh5ZCw065LMeeEvt6lsLHpUHNWH-HUPZz6CKc-w-krD6dKQMR_cc2MBCP_AKwxYeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Kai ; Sun, Hua ; Ji, Mingyue ; Mi, Tiebin ; Caire, Giuseppe</creator><creatorcontrib>Wan, Kai ; Sun, Hua ; Ji, Mingyue ; Mi, Tiebin ; Caire, Giuseppe</creatorcontrib><description><![CDATA[This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates from the users to the server in the two rounds of the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> users, where <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> is a defined system parameter. The capacity region for the information theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition <inline-formula> <tex-math notation="LaTeX">{\mathsf S}\gt {\mathsf K}-{\mathsf U} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathsf K </tex-math></inline-formula> is the number of total users and <inline-formula> <tex-math notation="LaTeX">\mathsf U </tex-math></inline-formula> is the designed minimum number of surviving users (which is another system parameter). In this paper we fully characterize the capacity region for this problem by matching a new converse bound and an achievable scheme. Experimental results over the Tencent Cloud show the improvement on the model aggregation time compared to the original secure aggregation scheme.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2024.3393740</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Federated learning ; information theoretic security ; Secure aggregation ; Servers ; Sun ; Training ; uncoded groupwise keys ; Vectors</subject><ispartof>IEEE transactions on information theory, 2024-10, Vol.70 (10), p.6932-6949</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-cf6b3c513afb555e999b0b289818a0b214fce9219c3b5cf9f87cef2f44db1f253</cites><orcidid>0000-0002-7970-2245 ; 0000-0002-7749-1333 ; 0000-0003-4671-3287 ; 0000-0001-6758-116X ; 0000-0001-8777-7987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Kai</creatorcontrib><creatorcontrib>Sun, Hua</creatorcontrib><creatorcontrib>Ji, Mingyue</creatorcontrib><creatorcontrib>Mi, Tiebin</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><title>The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates from the users to the server in the two rounds of the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> users, where <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> is a defined system parameter. The capacity region for the information theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition <inline-formula> <tex-math notation="LaTeX">{\mathsf S}\gt {\mathsf K}-{\mathsf U} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathsf K </tex-math></inline-formula> is the number of total users and <inline-formula> <tex-math notation="LaTeX">\mathsf U </tex-math></inline-formula> is the designed minimum number of surviving users (which is another system parameter). In this paper we fully characterize the capacity region for this problem by matching a new converse bound and an achievable scheme. Experimental results over the Tencent Cloud show the improvement on the model aggregation time compared to the original secure aggregation scheme.]]></description><subject>Computational modeling</subject><subject>Data models</subject><subject>Federated learning</subject><subject>information theoretic security</subject><subject>Secure aggregation</subject><subject>Servers</subject><subject>Sun</subject><subject>Training</subject><subject>uncoded groupwise keys</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEUxBujiYjePXjoF1jsX-g7EqK4kcREl3jwsOmW16VGKGmXGL69S-Dgad7kzczhR8g9ZyPOGTxWZTUSTKiRlCAnil2QAdd6UsBYq0syYIybApQy1-Qm5-_eKs3FgHxVa6Qzu7MudAf6jm2IWxo9Lbc-po3tjraPxIRdcPQD3T4hnbZtwvb0_Azdmi63Lq5wRecp7ne_ISN9xUO-JVfe_mS8O-uQLJ-fqtlLsXibl7PponBCQ1c4P26k01xa32itEQAa1ggDhhvbH1x5hyA4ONlo58GbiUMvvFKrhnuh5ZCw065LMeeEvt6lsLHpUHNWH-HUPZz6CKc-w-krD6dKQMR_cc2MBCP_AKwxYeM</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wan, Kai</creator><creator>Sun, Hua</creator><creator>Ji, Mingyue</creator><creator>Mi, Tiebin</creator><creator>Caire, Giuseppe</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7970-2245</orcidid><orcidid>https://orcid.org/0000-0002-7749-1333</orcidid><orcidid>https://orcid.org/0000-0003-4671-3287</orcidid><orcidid>https://orcid.org/0000-0001-6758-116X</orcidid><orcidid>https://orcid.org/0000-0001-8777-7987</orcidid></search><sort><creationdate>20241001</creationdate><title>The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys</title><author>Wan, Kai ; Sun, Hua ; Ji, Mingyue ; Mi, Tiebin ; Caire, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-cf6b3c513afb555e999b0b289818a0b214fce9219c3b5cf9f87cef2f44db1f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Federated learning</topic><topic>information theoretic security</topic><topic>Secure aggregation</topic><topic>Servers</topic><topic>Sun</topic><topic>Training</topic><topic>uncoded groupwise keys</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Kai</creatorcontrib><creatorcontrib>Sun, Hua</creatorcontrib><creatorcontrib>Ji, Mingyue</creatorcontrib><creatorcontrib>Mi, Tiebin</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Kai</au><au>Sun, Hua</au><au>Ji, Mingyue</au><au>Mi, Tiebin</au><au>Caire, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>70</volume><issue>10</issue><spage>6932</spage><epage>6949</epage><pages>6932-6949</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates from the users to the server in the two rounds of the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> users, where <inline-formula> <tex-math notation="LaTeX">\mathsf S </tex-math></inline-formula> is a defined system parameter. The capacity region for the information theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition <inline-formula> <tex-math notation="LaTeX">{\mathsf S}\gt {\mathsf K}-{\mathsf U} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathsf K </tex-math></inline-formula> is the number of total users and <inline-formula> <tex-math notation="LaTeX">\mathsf U </tex-math></inline-formula> is the designed minimum number of surviving users (which is another system parameter). In this paper we fully characterize the capacity region for this problem by matching a new converse bound and an achievable scheme. Experimental results over the Tencent Cloud show the improvement on the model aggregation time compared to the original secure aggregation scheme.]]></abstract><pub>IEEE</pub><doi>10.1109/TIT.2024.3393740</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7970-2245</orcidid><orcidid>https://orcid.org/0000-0002-7749-1333</orcidid><orcidid>https://orcid.org/0000-0003-4671-3287</orcidid><orcidid>https://orcid.org/0000-0001-6758-116X</orcidid><orcidid>https://orcid.org/0000-0001-8777-7987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-10, Vol.70 (10), p.6932-6949
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2024_3393740
source IEEE Electronic Library (IEL)
subjects Computational modeling
Data models
Federated learning
information theoretic security
Secure aggregation
Servers
Sun
Training
uncoded groupwise keys
Vectors
title The Capacity Region of Information Theoretic Secure Aggregation With Uncoded Groupwise Keys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Capacity%20Region%20of%20Information%20Theoretic%20Secure%20Aggregation%20With%20Uncoded%20Groupwise%20Keys&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wan,%20Kai&rft.date=2024-10-01&rft.volume=70&rft.issue=10&rft.spage=6932&rft.epage=6949&rft.pages=6932-6949&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3393740&rft_dat=%3Ccrossref_RIE%3E10_1109_TIT_2024_3393740%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10508398&rfr_iscdi=true