Gaussian Mixture Reduction With Composite Transportation Divergence

Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-07, Vol.70 (7), p.5191-5212
Hauptverfasser: Zhang, Qiong, Zhang, Archer Gong, Chen, Jiahua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5212
container_issue 7
container_start_page 5191
container_title IEEE transactions on information theory
container_volume 70
creator Zhang, Qiong
Zhang, Archer Gong
Chen, Jiahua
description Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these recursive processes stems from the exponential increase in the mixture's order, resulting in intractable inference. To overcome the difficulty, the Gaussian mixture reduction (GMR), which approximates a high order Gaussian mixture by one with a lower order, can be used. Although existing clustering-based methods are known for their satisfactory performance and computational efficiency, their convergence properties and optimal targets remain unknown. In this paper, we propose a novel optimization-based GMR method based on composite transportation divergence (CTD). We develop a majorization-minimization algorithm for computing the reduced mixture and establish its theoretical convergence under general conditions. Furthermore, we demonstrate that many existing clustering-based methods are special cases of ours, effectively bridging the gap between optimization-based and clustering-based techniques. Our unified framework empowers users to select the most appropriate cost function in CTD to achieve superior performance in their specific applications. Through extensive empirical experiments, we demonstrate the efficiency and effectiveness of our proposed method, showcasing its potential in various domains.
doi_str_mv 10.1109/TIT.2023.3323346
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3323346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275014</ieee_id><sourcerecordid>3069618467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2241de2c48c1f663a365f0818251de55e4db9d440f239af6ba36fc13e7fee7e23</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfudzZHibYWKoJEPC7bzaxusUncTUT_vVvbg6dhZp53Bh6ELgmeEYLLm3pZzyimbMYYZYzLIzQhQhR5KQU_RhOMicpLztUpOotxk1ouCJ2gamHGGL1ps0f_PYwBsmdoRjv4rs1e_fCeVd2276IfIKuDaWPfhcH8be_8F4Q3aC2coxNnPiJcHOoUvczv6-ohXz0tltXtKrdUFUNOKScNUMuVJU5KZpgUDiuiqEhzIYA367LhHDvKSuPkOgHOEgaFAyiAsim63t_tQ_c5Qhz0phtDm15qhmUpieKySBTeUzZ0MQZwug9-a8KPJljvVOmkSu9U6YOqFLnaRzwA_MNpIZIn9gtA0WUj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069618467</pqid></control><display><type>article</type><title>Gaussian Mixture Reduction With Composite Transportation Divergence</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qiong ; Zhang, Archer Gong ; Chen, Jiahua</creator><creatorcontrib>Zhang, Qiong ; Zhang, Archer Gong ; Chen, Jiahua</creatorcontrib><description>Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these recursive processes stems from the exponential increase in the mixture's order, resulting in intractable inference. To overcome the difficulty, the Gaussian mixture reduction (GMR), which approximates a high order Gaussian mixture by one with a lower order, can be used. Although existing clustering-based methods are known for their satisfactory performance and computational efficiency, their convergence properties and optimal targets remain unknown. In this paper, we propose a novel optimization-based GMR method based on composite transportation divergence (CTD). We develop a majorization-minimization algorithm for computing the reduced mixture and establish its theoretical convergence under general conditions. Furthermore, we demonstrate that many existing clustering-based methods are special cases of ours, effectively bridging the gap between optimization-based and clustering-based techniques. Our unified framework empowers users to select the most appropriate cost function in CTD to achieve superior performance in their specific applications. Through extensive empirical experiments, we demonstrate the efficiency and effectiveness of our proposed method, showcasing its potential in various domains.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3323346</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximate inference ; Approximation ; belief propagation ; Clustering ; Clustering algorithms ; Computational efficiency ; Convergence ; Cost function ; Density ; density approximation ; Density functional theory ; Divergence ; Gaussian mixture reduction ; Mixture models ; Mixtures ; optimal transportation ; Optimization ; Transportation</subject><ispartof>IEEE transactions on information theory, 2024-07, Vol.70 (7), p.5191-5212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-2241de2c48c1f663a365f0818251de55e4db9d440f239af6ba36fc13e7fee7e23</cites><orcidid>0000-0001-9943-3743 ; 0000-0001-8064-4444 ; 0000-0003-3617-3221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10275014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Zhang, Archer Gong</creatorcontrib><creatorcontrib>Chen, Jiahua</creatorcontrib><title>Gaussian Mixture Reduction With Composite Transportation Divergence</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these recursive processes stems from the exponential increase in the mixture's order, resulting in intractable inference. To overcome the difficulty, the Gaussian mixture reduction (GMR), which approximates a high order Gaussian mixture by one with a lower order, can be used. Although existing clustering-based methods are known for their satisfactory performance and computational efficiency, their convergence properties and optimal targets remain unknown. In this paper, we propose a novel optimization-based GMR method based on composite transportation divergence (CTD). We develop a majorization-minimization algorithm for computing the reduced mixture and establish its theoretical convergence under general conditions. Furthermore, we demonstrate that many existing clustering-based methods are special cases of ours, effectively bridging the gap between optimization-based and clustering-based techniques. Our unified framework empowers users to select the most appropriate cost function in CTD to achieve superior performance in their specific applications. Through extensive empirical experiments, we demonstrate the efficiency and effectiveness of our proposed method, showcasing its potential in various domains.</description><subject>Algorithms</subject><subject>Approximate inference</subject><subject>Approximation</subject><subject>belief propagation</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Density</subject><subject>density approximation</subject><subject>Density functional theory</subject><subject>Divergence</subject><subject>Gaussian mixture reduction</subject><subject>Mixture models</subject><subject>Mixtures</subject><subject>optimal transportation</subject><subject>Optimization</subject><subject>Transportation</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfudzZHibYWKoJEPC7bzaxusUncTUT_vVvbg6dhZp53Bh6ELgmeEYLLm3pZzyimbMYYZYzLIzQhQhR5KQU_RhOMicpLztUpOotxk1ouCJ2gamHGGL1ps0f_PYwBsmdoRjv4rs1e_fCeVd2276IfIKuDaWPfhcH8be_8F4Q3aC2coxNnPiJcHOoUvczv6-ohXz0tltXtKrdUFUNOKScNUMuVJU5KZpgUDiuiqEhzIYA367LhHDvKSuPkOgHOEgaFAyiAsim63t_tQ_c5Qhz0phtDm15qhmUpieKySBTeUzZ0MQZwug9-a8KPJljvVOmkSu9U6YOqFLnaRzwA_MNpIZIn9gtA0WUj</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Qiong</creator><creator>Zhang, Archer Gong</creator><creator>Chen, Jiahua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9943-3743</orcidid><orcidid>https://orcid.org/0000-0001-8064-4444</orcidid><orcidid>https://orcid.org/0000-0003-3617-3221</orcidid></search><sort><creationdate>20240701</creationdate><title>Gaussian Mixture Reduction With Composite Transportation Divergence</title><author>Zhang, Qiong ; Zhang, Archer Gong ; Chen, Jiahua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2241de2c48c1f663a365f0818251de55e4db9d440f239af6ba36fc13e7fee7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximate inference</topic><topic>Approximation</topic><topic>belief propagation</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Density</topic><topic>density approximation</topic><topic>Density functional theory</topic><topic>Divergence</topic><topic>Gaussian mixture reduction</topic><topic>Mixture models</topic><topic>Mixtures</topic><topic>optimal transportation</topic><topic>Optimization</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Zhang, Archer Gong</creatorcontrib><creatorcontrib>Chen, Jiahua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qiong</au><au>Zhang, Archer Gong</au><au>Chen, Jiahua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Mixture Reduction With Composite Transportation Divergence</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>70</volume><issue>7</issue><spage>5191</spage><epage>5212</epage><pages>5191-5212</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these recursive processes stems from the exponential increase in the mixture's order, resulting in intractable inference. To overcome the difficulty, the Gaussian mixture reduction (GMR), which approximates a high order Gaussian mixture by one with a lower order, can be used. Although existing clustering-based methods are known for their satisfactory performance and computational efficiency, their convergence properties and optimal targets remain unknown. In this paper, we propose a novel optimization-based GMR method based on composite transportation divergence (CTD). We develop a majorization-minimization algorithm for computing the reduced mixture and establish its theoretical convergence under general conditions. Furthermore, we demonstrate that many existing clustering-based methods are special cases of ours, effectively bridging the gap between optimization-based and clustering-based techniques. Our unified framework empowers users to select the most appropriate cost function in CTD to achieve superior performance in their specific applications. Through extensive empirical experiments, we demonstrate the efficiency and effectiveness of our proposed method, showcasing its potential in various domains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3323346</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9943-3743</orcidid><orcidid>https://orcid.org/0000-0001-8064-4444</orcidid><orcidid>https://orcid.org/0000-0003-3617-3221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-07, Vol.70 (7), p.5191-5212
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2023_3323346
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximate inference
Approximation
belief propagation
Clustering
Clustering algorithms
Computational efficiency
Convergence
Cost function
Density
density approximation
Density functional theory
Divergence
Gaussian mixture reduction
Mixture models
Mixtures
optimal transportation
Optimization
Transportation
title Gaussian Mixture Reduction With Composite Transportation Divergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Mixture%20Reduction%20With%20Composite%20Transportation%20Divergence&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Qiong&rft.date=2024-07-01&rft.volume=70&rft.issue=7&rft.spage=5191&rft.epage=5212&rft.pages=5191-5212&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3323346&rft_dat=%3Cproquest_RIE%3E3069618467%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069618467&rft_id=info:pmid/&rft_ieee_id=10275014&rfr_iscdi=true