An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling
We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diff...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-01, Vol.70 (1), p.571-593 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 1 |
container_start_page | 571 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | He, Ye Balasubramanian, Krishnakumar Erdogdu, Murat A. |
description | We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations. |
doi_str_mv | 10.1109/TIT.2023.3318152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3318152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258391</ieee_id><sourcerecordid>2906589974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dycducixFbaEg6PYc0k22btmPmmwL_fdNaQ-e5h143oF5CHlGmCCCeisWxYQCZRPGUKKgN2SEQuSpygS_JSMAlKniXN6ThxC2ceUC6Yh8T7tk2pnmGOqQ9FVSeNOFqvets8mqM3a7D0OMS9Nt3KGObLPpfT38tkmEkrkzh2NamLqJzI9pd03dbR7JXWWa4J6uc0xWH-_FbJ4uvz4Xs-kyLSkXQyozmTmo7JohL0UFmOeQWymzLEdrkKFjAFm1NpK53CmLpbWCApfGSVUyYGPyerm78_3f3oVBb_u9j78ETRVkQiqV80jBhSp9H4J3ld75ujX-qBH02ZyO5vTZnL6ai5WXS6V2zv3DqZBMITsBPttpQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906589974</pqid></control><display><type>article</type><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><source>IEEE Electronic Library (IEL)</source><creator>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</creator><creatorcontrib>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</creatorcontrib><description>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3318152</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity of sampling ; Complexity theory ; Differential equations ; Dirichlet problem ; functional inequalities ; Heavily-tailed distribution ; heavy-tailed densities ; Indium tin oxide ; Inequalities ; Isomorphism ; Large scale integration ; Lightly-tailed distribution ; Polynomials ; Samplers ; Sampling ; Symmetric matrices ; Tail</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.571-593</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</cites><orcidid>0000-0003-4686-8449 ; 0000-0001-5271-9314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Balasubramanian, Krishnakumar</creatorcontrib><creatorcontrib>Erdogdu, Murat A.</creatorcontrib><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</description><subject>Algorithms</subject><subject>Complexity of sampling</subject><subject>Complexity theory</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>functional inequalities</subject><subject>Heavily-tailed distribution</subject><subject>heavy-tailed densities</subject><subject>Indium tin oxide</subject><subject>Inequalities</subject><subject>Isomorphism</subject><subject>Large scale integration</subject><subject>Lightly-tailed distribution</subject><subject>Polynomials</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Symmetric matrices</subject><subject>Tail</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dycducixFbaEg6PYc0k22btmPmmwL_fdNaQ-e5h143oF5CHlGmCCCeisWxYQCZRPGUKKgN2SEQuSpygS_JSMAlKniXN6ThxC2ceUC6Yh8T7tk2pnmGOqQ9FVSeNOFqvets8mqM3a7D0OMS9Nt3KGObLPpfT38tkmEkrkzh2NamLqJzI9pd03dbR7JXWWa4J6uc0xWH-_FbJ4uvz4Xs-kyLSkXQyozmTmo7JohL0UFmOeQWymzLEdrkKFjAFm1NpK53CmLpbWCApfGSVUyYGPyerm78_3f3oVBb_u9j78ETRVkQiqV80jBhSp9H4J3ld75ujX-qBH02ZyO5vTZnL6ai5WXS6V2zv3DqZBMITsBPttpQw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>He, Ye</creator><creator>Balasubramanian, Krishnakumar</creator><creator>Erdogdu, Murat A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4686-8449</orcidid><orcidid>https://orcid.org/0000-0001-5271-9314</orcidid></search><sort><creationdate>202401</creationdate><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><author>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity of sampling</topic><topic>Complexity theory</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>functional inequalities</topic><topic>Heavily-tailed distribution</topic><topic>heavy-tailed densities</topic><topic>Indium tin oxide</topic><topic>Inequalities</topic><topic>Isomorphism</topic><topic>Large scale integration</topic><topic>Lightly-tailed distribution</topic><topic>Polynomials</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Symmetric matrices</topic><topic>Tail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Balasubramanian, Krishnakumar</creatorcontrib><creatorcontrib>Erdogdu, Murat A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Ye</au><au>Balasubramanian, Krishnakumar</au><au>Erdogdu, Murat A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>571</spage><epage>593</epage><pages>571-593</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3318152</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4686-8449</orcidid><orcidid>https://orcid.org/0000-0001-5271-9314</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-01, Vol.70 (1), p.571-593 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2023_3318152 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Complexity of sampling Complexity theory Differential equations Dirichlet problem functional inequalities Heavily-tailed distribution heavy-tailed densities Indium tin oxide Inequalities Isomorphism Large scale integration Lightly-tailed distribution Polynomials Samplers Sampling Symmetric matrices Tail |
title | An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analysis%20of%20Transformed%20Unadjusted%20Langevin%20Algorithm%20for%20Heavy-Tailed%20Sampling&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=He,%20Ye&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.spage=571&rft.epage=593&rft.pages=571-593&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3318152&rft_dat=%3Cproquest_RIE%3E2906589974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906589974&rft_id=info:pmid/&rft_ieee_id=10258391&rfr_iscdi=true |