An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling

We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-01, Vol.70 (1), p.571-593
Hauptverfasser: He, Ye, Balasubramanian, Krishnakumar, Erdogdu, Murat A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 1
container_start_page 571
container_title IEEE transactions on information theory
container_volume 70
creator He, Ye
Balasubramanian, Krishnakumar
Erdogdu, Murat A.
description We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.
doi_str_mv 10.1109/TIT.2023.3318152
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3318152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258391</ieee_id><sourcerecordid>2906589974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dycducixFbaEg6PYc0k22btmPmmwL_fdNaQ-e5h143oF5CHlGmCCCeisWxYQCZRPGUKKgN2SEQuSpygS_JSMAlKniXN6ThxC2ceUC6Yh8T7tk2pnmGOqQ9FVSeNOFqvets8mqM3a7D0OMS9Nt3KGObLPpfT38tkmEkrkzh2NamLqJzI9pd03dbR7JXWWa4J6uc0xWH-_FbJ4uvz4Xs-kyLSkXQyozmTmo7JohL0UFmOeQWymzLEdrkKFjAFm1NpK53CmLpbWCApfGSVUyYGPyerm78_3f3oVBb_u9j78ETRVkQiqV80jBhSp9H4J3ld75ujX-qBH02ZyO5vTZnL6ai5WXS6V2zv3DqZBMITsBPttpQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906589974</pqid></control><display><type>article</type><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><source>IEEE Electronic Library (IEL)</source><creator>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</creator><creatorcontrib>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</creatorcontrib><description>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3318152</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity of sampling ; Complexity theory ; Differential equations ; Dirichlet problem ; functional inequalities ; Heavily-tailed distribution ; heavy-tailed densities ; Indium tin oxide ; Inequalities ; Isomorphism ; Large scale integration ; Lightly-tailed distribution ; Polynomials ; Samplers ; Sampling ; Symmetric matrices ; Tail</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.571-593</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</cites><orcidid>0000-0003-4686-8449 ; 0000-0001-5271-9314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Balasubramanian, Krishnakumar</creatorcontrib><creatorcontrib>Erdogdu, Murat A.</creatorcontrib><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</description><subject>Algorithms</subject><subject>Complexity of sampling</subject><subject>Complexity theory</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>functional inequalities</subject><subject>Heavily-tailed distribution</subject><subject>heavy-tailed densities</subject><subject>Indium tin oxide</subject><subject>Inequalities</subject><subject>Isomorphism</subject><subject>Large scale integration</subject><subject>Lightly-tailed distribution</subject><subject>Polynomials</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Symmetric matrices</subject><subject>Tail</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dycducixFbaEg6PYc0k22btmPmmwL_fdNaQ-e5h143oF5CHlGmCCCeisWxYQCZRPGUKKgN2SEQuSpygS_JSMAlKniXN6ThxC2ceUC6Yh8T7tk2pnmGOqQ9FVSeNOFqvets8mqM3a7D0OMS9Nt3KGObLPpfT38tkmEkrkzh2NamLqJzI9pd03dbR7JXWWa4J6uc0xWH-_FbJ4uvz4Xs-kyLSkXQyozmTmo7JohL0UFmOeQWymzLEdrkKFjAFm1NpK53CmLpbWCApfGSVUyYGPyerm78_3f3oVBb_u9j78ETRVkQiqV80jBhSp9H4J3ld75ujX-qBH02ZyO5vTZnL6ai5WXS6V2zv3DqZBMITsBPttpQw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>He, Ye</creator><creator>Balasubramanian, Krishnakumar</creator><creator>Erdogdu, Murat A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4686-8449</orcidid><orcidid>https://orcid.org/0000-0001-5271-9314</orcidid></search><sort><creationdate>202401</creationdate><title>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</title><author>He, Ye ; Balasubramanian, Krishnakumar ; Erdogdu, Murat A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8686e0fdb314c5f017707d886671da131e3006fba83e7e9d1cdd52048ae89c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity of sampling</topic><topic>Complexity theory</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>functional inequalities</topic><topic>Heavily-tailed distribution</topic><topic>heavy-tailed densities</topic><topic>Indium tin oxide</topic><topic>Inequalities</topic><topic>Isomorphism</topic><topic>Large scale integration</topic><topic>Lightly-tailed distribution</topic><topic>Polynomials</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Symmetric matrices</topic><topic>Tail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Balasubramanian, Krishnakumar</creatorcontrib><creatorcontrib>Erdogdu, Murat A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Ye</au><au>Balasubramanian, Krishnakumar</au><au>Erdogdu, Murat A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>571</spage><epage>593</epage><pages>571-593</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We analyze the oracle complexity of sampling from polynomially decaying heavy-tailed target densities based on running the Unadjusted Langevin Algorithm on certain transformed versions of the target density. The specific class of closed-form transformation maps that we construct are shown to be diffeomorphisms, and are particularly suited for developing efficient diffusion-based samplers. We characterize the precise class of heavy-tailed densities for which polynomial-order oracle complexities (in dimension and inverse target accuracy) could be obtained, and provide illustrative examples. We highlight the relationship between our assumptions and functional inequalities (super and weak Poincaré inequalities) based on non-local Dirichlet forms defined via fractional Laplacian operators, used to characterize the heavy-tailed equilibrium densities of certain stable-driven stochastic differential equations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3318152</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4686-8449</orcidid><orcidid>https://orcid.org/0000-0001-5271-9314</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-01, Vol.70 (1), p.571-593
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2023_3318152
source IEEE Electronic Library (IEL)
subjects Algorithms
Complexity of sampling
Complexity theory
Differential equations
Dirichlet problem
functional inequalities
Heavily-tailed distribution
heavy-tailed densities
Indium tin oxide
Inequalities
Isomorphism
Large scale integration
Lightly-tailed distribution
Polynomials
Samplers
Sampling
Symmetric matrices
Tail
title An Analysis of Transformed Unadjusted Langevin Algorithm for Heavy-Tailed Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analysis%20of%20Transformed%20Unadjusted%20Langevin%20Algorithm%20for%20Heavy-Tailed%20Sampling&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=He,%20Ye&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.spage=571&rft.epage=593&rft.pages=571-593&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3318152&rft_dat=%3Cproquest_RIE%3E2906589974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906589974&rft_id=info:pmid/&rft_ieee_id=10258391&rfr_iscdi=true