Circuit knitting with classical communication

The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-04, Vol.70 (4), p.1-1
Hauptverfasser: Piveteau, Christophe, Sutter, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE transactions on information theory
container_volume 70
creator Piveteau, Christophe
Sutter, David
description The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.
doi_str_mv 10.1109/TIT.2023.3310797
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3310797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236453</ieee_id><sourcerecordid>2969052533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EEqWwMzBEYk549rOTeEQRH5UqsYTZcl0HXNKk2I4Q_z2u0oHp3Ul396QfIbcUCkpBPrSrtmDAsECkUMnqjCyoEFUuS8HPyQKA1rnkvL4kVyHskuWCsgXJG-fN5GL2NbgY3fCR_bj4mZleh-CM7jMz7vfTkGR043BNLjrdB3tzukvy_vzUNq_5-u1l1Tyuc8Mki3nZ2c4aAxoFbMragtyiZFUHndEca64BUehabysDwhq9AWRgdFknX0kGuCT38-7Bj9-TDVHtxskP6aVispQgmEBMKZhTxo8heNupg3d77X8VBXWEohIUdYSiTlBS5W6uOGvtvzjDkqfJP2MiXP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969052533</pqid></control><display><type>article</type><title>Circuit knitting with classical communication</title><source>IEEE Electronic Library Online</source><creator>Piveteau, Christophe ; Sutter, David</creator><creatorcontrib>Piveteau, Christophe ; Sutter, David</creatorcontrib><description>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3310797</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>circuit cutting ; Computers ; Gates (circuits) ; Hardware ; Knitting ; LOCC ; Logic gates ; Protocols ; Quantum computers ; Quantum computing ; quasiprobability decomposition ; Qubit ; Qubits (quantum computing) ; robustness of entanglement ; Simulation ; Task analysis</subject><ispartof>IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</citedby><cites>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</cites><orcidid>0000-0001-9779-8888 ; 0000-0002-0591-9740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piveteau, Christophe</creatorcontrib><creatorcontrib>Sutter, David</creatorcontrib><title>Circuit knitting with classical communication</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</description><subject>circuit cutting</subject><subject>Computers</subject><subject>Gates (circuits)</subject><subject>Hardware</subject><subject>Knitting</subject><subject>LOCC</subject><subject>Logic gates</subject><subject>Protocols</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>quasiprobability decomposition</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>robustness of entanglement</subject><subject>Simulation</subject><subject>Task analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAUxC0EEqWwMzBEYk549rOTeEQRH5UqsYTZcl0HXNKk2I4Q_z2u0oHp3Ul396QfIbcUCkpBPrSrtmDAsECkUMnqjCyoEFUuS8HPyQKA1rnkvL4kVyHskuWCsgXJG-fN5GL2NbgY3fCR_bj4mZleh-CM7jMz7vfTkGR043BNLjrdB3tzukvy_vzUNq_5-u1l1Tyuc8Mki3nZ2c4aAxoFbMragtyiZFUHndEca64BUehabysDwhq9AWRgdFknX0kGuCT38-7Bj9-TDVHtxskP6aVispQgmEBMKZhTxo8heNupg3d77X8VBXWEohIUdYSiTlBS5W6uOGvtvzjDkqfJP2MiXP0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Piveteau, Christophe</creator><creator>Sutter, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9779-8888</orcidid><orcidid>https://orcid.org/0000-0002-0591-9740</orcidid></search><sort><creationdate>20240401</creationdate><title>Circuit knitting with classical communication</title><author>Piveteau, Christophe ; Sutter, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>circuit cutting</topic><topic>Computers</topic><topic>Gates (circuits)</topic><topic>Hardware</topic><topic>Knitting</topic><topic>LOCC</topic><topic>Logic gates</topic><topic>Protocols</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>quasiprobability decomposition</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>robustness of entanglement</topic><topic>Simulation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piveteau, Christophe</creatorcontrib><creatorcontrib>Sutter, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piveteau, Christophe</au><au>Sutter, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit knitting with classical communication</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3310797</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9779-8888</orcidid><orcidid>https://orcid.org/0000-0002-0591-9740</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2023_3310797
source IEEE Electronic Library Online
subjects circuit cutting
Computers
Gates (circuits)
Hardware
Knitting
LOCC
Logic gates
Protocols
Quantum computers
Quantum computing
quasiprobability decomposition
Qubit
Qubits (quantum computing)
robustness of entanglement
Simulation
Task analysis
title Circuit knitting with classical communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20knitting%20with%20classical%20communication&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Piveteau,%20Christophe&rft.date=2024-04-01&rft.volume=70&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3310797&rft_dat=%3Cproquest_RIE%3E2969052533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969052533&rft_id=info:pmid/&rft_ieee_id=10236453&rfr_iscdi=true