Circuit knitting with classical communication
The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-04, Vol.70 (4), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | Piveteau, Christophe Sutter, David |
description | The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates. |
doi_str_mv | 10.1109/TIT.2023.3310797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3310797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236453</ieee_id><sourcerecordid>2969052533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EEqWwMzBEYk549rOTeEQRH5UqsYTZcl0HXNKk2I4Q_z2u0oHp3Ul396QfIbcUCkpBPrSrtmDAsECkUMnqjCyoEFUuS8HPyQKA1rnkvL4kVyHskuWCsgXJG-fN5GL2NbgY3fCR_bj4mZleh-CM7jMz7vfTkGR043BNLjrdB3tzukvy_vzUNq_5-u1l1Tyuc8Mki3nZ2c4aAxoFbMragtyiZFUHndEca64BUehabysDwhq9AWRgdFknX0kGuCT38-7Bj9-TDVHtxskP6aVispQgmEBMKZhTxo8heNupg3d77X8VBXWEohIUdYSiTlBS5W6uOGvtvzjDkqfJP2MiXP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969052533</pqid></control><display><type>article</type><title>Circuit knitting with classical communication</title><source>IEEE Electronic Library Online</source><creator>Piveteau, Christophe ; Sutter, David</creator><creatorcontrib>Piveteau, Christophe ; Sutter, David</creatorcontrib><description>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3310797</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>circuit cutting ; Computers ; Gates (circuits) ; Hardware ; Knitting ; LOCC ; Logic gates ; Protocols ; Quantum computers ; Quantum computing ; quasiprobability decomposition ; Qubit ; Qubits (quantum computing) ; robustness of entanglement ; Simulation ; Task analysis</subject><ispartof>IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</citedby><cites>FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</cites><orcidid>0000-0001-9779-8888 ; 0000-0002-0591-9740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piveteau, Christophe</creatorcontrib><creatorcontrib>Sutter, David</creatorcontrib><title>Circuit knitting with classical communication</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</description><subject>circuit cutting</subject><subject>Computers</subject><subject>Gates (circuits)</subject><subject>Hardware</subject><subject>Knitting</subject><subject>LOCC</subject><subject>Logic gates</subject><subject>Protocols</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>quasiprobability decomposition</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>robustness of entanglement</subject><subject>Simulation</subject><subject>Task analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAUxC0EEqWwMzBEYk549rOTeEQRH5UqsYTZcl0HXNKk2I4Q_z2u0oHp3Ul396QfIbcUCkpBPrSrtmDAsECkUMnqjCyoEFUuS8HPyQKA1rnkvL4kVyHskuWCsgXJG-fN5GL2NbgY3fCR_bj4mZleh-CM7jMz7vfTkGR043BNLjrdB3tzukvy_vzUNq_5-u1l1Tyuc8Mki3nZ2c4aAxoFbMragtyiZFUHndEca64BUehabysDwhq9AWRgdFknX0kGuCT38-7Bj9-TDVHtxskP6aVispQgmEBMKZhTxo8heNupg3d77X8VBXWEohIUdYSiTlBS5W6uOGvtvzjDkqfJP2MiXP0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Piveteau, Christophe</creator><creator>Sutter, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9779-8888</orcidid><orcidid>https://orcid.org/0000-0002-0591-9740</orcidid></search><sort><creationdate>20240401</creationdate><title>Circuit knitting with classical communication</title><author>Piveteau, Christophe ; Sutter, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6fefecc0a350b68e09d3927f0fca4384a0335a8ad7c05ecab0320ca687c079203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>circuit cutting</topic><topic>Computers</topic><topic>Gates (circuits)</topic><topic>Hardware</topic><topic>Knitting</topic><topic>LOCC</topic><topic>Logic gates</topic><topic>Protocols</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>quasiprobability decomposition</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>robustness of entanglement</topic><topic>Simulation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piveteau, Christophe</creatorcontrib><creatorcontrib>Sutter, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piveteau, Christophe</au><au>Sutter, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit knitting with classical communication</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a simulation overhead. In this work, we study a particular method of circuit knitting based on quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits. We investigate whether classical communication between these local quantum computers can help. We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates connecting two circuit parts, the simulation overhead can be reduced from O (9 n ) to O (4 n ) if one allows for classical information exchange. Similar improvements can be obtained for general Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3310797</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9779-8888</orcidid><orcidid>https://orcid.org/0000-0002-0591-9740</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2023_3310797 |
source | IEEE Electronic Library Online |
subjects | circuit cutting Computers Gates (circuits) Hardware Knitting LOCC Logic gates Protocols Quantum computers Quantum computing quasiprobability decomposition Qubit Qubits (quantum computing) robustness of entanglement Simulation Task analysis |
title | Circuit knitting with classical communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20knitting%20with%20classical%20communication&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Piveteau,%20Christophe&rft.date=2024-04-01&rft.volume=70&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3310797&rft_dat=%3Cproquest_RIE%3E2969052533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969052533&rft_id=info:pmid/&rft_ieee_id=10236453&rfr_iscdi=true |