Recovery from Non-Decomposable Distance Oracles
A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0, 1} ≤ n , and one chooses a set of queries y ∈ {0, 1} O ( n ) and receives d ( s , y ) for a distance function d . The goal is to make as few queries as possibl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2023-10, Vol.69 (10), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 69 |
creator | Hu, Zhuangfei Li, Xinda Woodruff, David P. Zhang, Hongyang Zhang, Shufan |
description | A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0, 1} ≤ n , and one chooses a set of queries y ∈ {0, 1} O ( n ) and receives d ( s , y ) for a distance function d . The goal is to make as few queries as possible to recover s . Although this problem is well-studied for decomposable distances, i.e., distances of the form d ( s , y ) = Σ n i =1 f ( s i , y i ) for some function f , which includes the important cases of Hamming distance, ℓ p -norms, and M -estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important instances including edit distance, dynamic time warping (DTW), Fréchet distance, earth mover's distance, and others. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. One motivation for understanding non-adaptivity is that the query sequence can be fixed and provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing. |
doi_str_mv | 10.1109/TIT.2023.3289981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3289981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10164646</ieee_id><sourcerecordid>2865090602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-108a060cd76ced82957f393356f4f01c9174ffbdd8ef3f101756f6fb5a8d43f03</originalsourceid><addsrcrecordid>eNpNkM1rAjEQxUNpodb23kMPCz2vzuRrk2PRfghSodhzyGYTWFFjEy343zeihzKHYWbeewM_Qh4RRoigx8vZckSBshGjSmuFV2SAQjS1loJfkwEAqlpzrm7JXc6rMnKBdEDGX97FX5-OVUhxU33GbT0tm80uZtuufTXt895una8Wybq1z_fkJth19g-XPiTfb6_LyUc9X7zPJi_z2jHG9zWCsiDBdY10vlNUiyYwzZiQgQdAp7HhIbRdp3xgAQGbcpGhFVZ1nAVgQ_J8zt2l-HPweW9W8ZC25aWhSgrQJZ0WFZxVLsWckw9ml_qNTUeDYE5YTMFiTljMBUuxPJ0tvff-nxwlL8X-AFw5XNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090602</pqid></control><display><type>article</type><title>Recovery from Non-Decomposable Distance Oracles</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Zhuangfei ; Li, Xinda ; Woodruff, David P. ; Zhang, Hongyang ; Zhang, Shufan</creator><creatorcontrib>Hu, Zhuangfei ; Li, Xinda ; Woodruff, David P. ; Zhang, Hongyang ; Zhang, Shufan</creatorcontrib><description>A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0, 1} ≤ n , and one chooses a set of queries y ∈ {0, 1} O ( n ) and receives d ( s , y ) for a distance function d . The goal is to make as few queries as possible to recover s . Although this problem is well-studied for decomposable distances, i.e., distances of the form d ( s , y ) = Σ n i =1 f ( s i , y i ) for some function f , which includes the important cases of Hamming distance, ℓ p -norms, and M -estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important instances including edit distance, dynamic time warping (DTW), Fréchet distance, earth mover's distance, and others. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. One motivation for understanding non-adaptivity is that the query sequence can be fixed and provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3289981</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity theory ; Decomposition ; DTW Distance ; Edit Distance ; Encoding ; Fréchet Distance ; Natural language processing ; Neural networks ; Perturbation methods ; Queries ; Recovery ; Robustness ; Sequence Recovery ; Symbols ; Testing ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2023-10, Vol.69 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-108a060cd76ced82957f393356f4f01c9174ffbdd8ef3f101756f6fb5a8d43f03</citedby><cites>FETCH-LOGICAL-c334t-108a060cd76ced82957f393356f4f01c9174ffbdd8ef3f101756f6fb5a8d43f03</cites><orcidid>0000-0002-0548-6068 ; 0000-0002-0983-2730 ; 0009-0000-7238-4005 ; 0009-0009-0077-2469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10164646$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10164646$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Zhuangfei</creatorcontrib><creatorcontrib>Li, Xinda</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Zhang, Hongyang</creatorcontrib><creatorcontrib>Zhang, Shufan</creatorcontrib><title>Recovery from Non-Decomposable Distance Oracles</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0, 1} ≤ n , and one chooses a set of queries y ∈ {0, 1} O ( n ) and receives d ( s , y ) for a distance function d . The goal is to make as few queries as possible to recover s . Although this problem is well-studied for decomposable distances, i.e., distances of the form d ( s , y ) = Σ n i =1 f ( s i , y i ) for some function f , which includes the important cases of Hamming distance, ℓ p -norms, and M -estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important instances including edit distance, dynamic time warping (DTW), Fréchet distance, earth mover's distance, and others. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. One motivation for understanding non-adaptivity is that the query sequence can be fixed and provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing.</description><subject>Complexity theory</subject><subject>Decomposition</subject><subject>DTW Distance</subject><subject>Edit Distance</subject><subject>Encoding</subject><subject>Fréchet Distance</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Perturbation methods</subject><subject>Queries</subject><subject>Recovery</subject><subject>Robustness</subject><subject>Sequence Recovery</subject><subject>Symbols</subject><subject>Testing</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1rAjEQxUNpodb23kMPCz2vzuRrk2PRfghSodhzyGYTWFFjEy343zeihzKHYWbeewM_Qh4RRoigx8vZckSBshGjSmuFV2SAQjS1loJfkwEAqlpzrm7JXc6rMnKBdEDGX97FX5-OVUhxU33GbT0tm80uZtuufTXt895una8Wybq1z_fkJth19g-XPiTfb6_LyUc9X7zPJi_z2jHG9zWCsiDBdY10vlNUiyYwzZiQgQdAp7HhIbRdp3xgAQGbcpGhFVZ1nAVgQ_J8zt2l-HPweW9W8ZC25aWhSgrQJZ0WFZxVLsWckw9ml_qNTUeDYE5YTMFiTljMBUuxPJ0tvff-nxwlL8X-AFw5XNc</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hu, Zhuangfei</creator><creator>Li, Xinda</creator><creator>Woodruff, David P.</creator><creator>Zhang, Hongyang</creator><creator>Zhang, Shufan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0548-6068</orcidid><orcidid>https://orcid.org/0000-0002-0983-2730</orcidid><orcidid>https://orcid.org/0009-0000-7238-4005</orcidid><orcidid>https://orcid.org/0009-0009-0077-2469</orcidid></search><sort><creationdate>20231001</creationdate><title>Recovery from Non-Decomposable Distance Oracles</title><author>Hu, Zhuangfei ; Li, Xinda ; Woodruff, David P. ; Zhang, Hongyang ; Zhang, Shufan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-108a060cd76ced82957f393356f4f01c9174ffbdd8ef3f101756f6fb5a8d43f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complexity theory</topic><topic>Decomposition</topic><topic>DTW Distance</topic><topic>Edit Distance</topic><topic>Encoding</topic><topic>Fréchet Distance</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Perturbation methods</topic><topic>Queries</topic><topic>Recovery</topic><topic>Robustness</topic><topic>Sequence Recovery</topic><topic>Symbols</topic><topic>Testing</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhuangfei</creatorcontrib><creatorcontrib>Li, Xinda</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Zhang, Hongyang</creatorcontrib><creatorcontrib>Zhang, Shufan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Zhuangfei</au><au>Li, Xinda</au><au>Woodruff, David P.</au><au>Zhang, Hongyang</au><au>Zhang, Shufan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery from Non-Decomposable Distance Oracles</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>69</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0, 1} ≤ n , and one chooses a set of queries y ∈ {0, 1} O ( n ) and receives d ( s , y ) for a distance function d . The goal is to make as few queries as possible to recover s . Although this problem is well-studied for decomposable distances, i.e., distances of the form d ( s , y ) = Σ n i =1 f ( s i , y i ) for some function f , which includes the important cases of Hamming distance, ℓ p -norms, and M -estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important instances including edit distance, dynamic time warping (DTW), Fréchet distance, earth mover's distance, and others. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. One motivation for understanding non-adaptivity is that the query sequence can be fixed and provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3289981</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0548-6068</orcidid><orcidid>https://orcid.org/0000-0002-0983-2730</orcidid><orcidid>https://orcid.org/0009-0000-7238-4005</orcidid><orcidid>https://orcid.org/0009-0009-0077-2469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2023-10, Vol.69 (10), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2023_3289981 |
source | IEEE Electronic Library (IEL) |
subjects | Complexity theory Decomposition DTW Distance Edit Distance Encoding Fréchet Distance Natural language processing Neural networks Perturbation methods Queries Recovery Robustness Sequence Recovery Symbols Testing Upper bound |
title | Recovery from Non-Decomposable Distance Oracles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20from%20Non-Decomposable%20Distance%20Oracles&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Hu,%20Zhuangfei&rft.date=2023-10-01&rft.volume=69&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3289981&rft_dat=%3Cproquest_RIE%3E2865090602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090602&rft_id=info:pmid/&rft_ieee_id=10164646&rfr_iscdi=true |