On a Tracial Version of Haemers Bound

We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over \mathbb {C} ) and prove that the generalization upper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-10, Vol.68 (10), p.6585-6604
Hauptverfasser: Gao, Li, Gribling, Sander, Li, Yinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6604
container_issue 10
container_start_page 6585
container_title IEEE transactions on information theory
container_volume 68
creator Gao, Li
Gribling, Sander
Li, Yinan
description We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over \mathbb {C} ) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.
doi_str_mv 10.1109/TIT.2022.3176935
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2022_3176935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779745</ieee_id><sourcerecordid>2714953857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuCeNw1mcwkm6OWaguFXlavIbubhS3tbk3ag__elBZPw8e8bwYeY4-CF0Jw81otqwI4QCGFVkbSFZsIIp0bRXjNJpyLMjeI5S27i3GTIpKACXtZD5nLquCa3m2zbx9iPw7Z2GUL53cpZe_jcWjv2U3nttE_XOaUfX3Mq9kiX60_l7O3Vd4A4iFviDqAFlDxtu40OtA1bzHtJKFHkKYTUgH3RFIaUE6VrlVQl41zrnYop-z5fHcfxp-jjwe7GY9hSC8taIGGZEk6UfxMNWGMMfjO7kO_c-HXCm5PMmySYU8y7EVGqjydK733_h83WhuNJP8Af4VXng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714953857</pqid></control><display><type>article</type><title>On a Tracial Version of Haemers Bound</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Li ; Gribling, Sander ; Li, Yinan</creator><creatorcontrib>Gao, Li ; Gribling, Sander ; Li, Yinan</creatorcontrib><description>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C} &lt;/tex-math&gt;&lt;/inline-formula&gt;) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3176935</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Algebra ; Atmospheric measurements ; Commuting ; Games ; Graphs ; Haemers bound ; Lovász theta function ; Operators (mathematics) ; Particle measurements ; Quantum entanglement ; Quantum independence number ; Shannon capacities ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2022-10, Vol.68 (10), p.6585-6604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</cites><orcidid>0000-0002-9220-0119 ; 0000-0002-5456-1319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Gribling, Sander</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><title>On a Tracial Version of Haemers Bound</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C} &lt;/tex-math&gt;&lt;/inline-formula&gt;) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</description><subject>Additives</subject><subject>Algebra</subject><subject>Atmospheric measurements</subject><subject>Commuting</subject><subject>Games</subject><subject>Graphs</subject><subject>Haemers bound</subject><subject>Lovász theta function</subject><subject>Operators (mathematics)</subject><subject>Particle measurements</subject><subject>Quantum entanglement</subject><subject>Quantum independence number</subject><subject>Shannon capacities</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuCeNw1mcwkm6OWaguFXlavIbubhS3tbk3ag__elBZPw8e8bwYeY4-CF0Jw81otqwI4QCGFVkbSFZsIIp0bRXjNJpyLMjeI5S27i3GTIpKACXtZD5nLquCa3m2zbx9iPw7Z2GUL53cpZe_jcWjv2U3nttE_XOaUfX3Mq9kiX60_l7O3Vd4A4iFviDqAFlDxtu40OtA1bzHtJKFHkKYTUgH3RFIaUE6VrlVQl41zrnYop-z5fHcfxp-jjwe7GY9hSC8taIGGZEk6UfxMNWGMMfjO7kO_c-HXCm5PMmySYU8y7EVGqjydK733_h83WhuNJP8Af4VXng</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gao, Li</creator><creator>Gribling, Sander</creator><creator>Li, Yinan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9220-0119</orcidid><orcidid>https://orcid.org/0000-0002-5456-1319</orcidid></search><sort><creationdate>20221001</creationdate><title>On a Tracial Version of Haemers Bound</title><author>Gao, Li ; Gribling, Sander ; Li, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Algebra</topic><topic>Atmospheric measurements</topic><topic>Commuting</topic><topic>Games</topic><topic>Graphs</topic><topic>Haemers bound</topic><topic>Lovász theta function</topic><topic>Operators (mathematics)</topic><topic>Particle measurements</topic><topic>Quantum entanglement</topic><topic>Quantum independence number</topic><topic>Shannon capacities</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Gribling, Sander</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Li</au><au>Gribling, Sander</au><au>Li, Yinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Tracial Version of Haemers Bound</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>68</volume><issue>10</issue><spage>6585</spage><epage>6604</epage><pages>6585-6604</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C} &lt;/tex-math&gt;&lt;/inline-formula&gt;) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3176935</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9220-0119</orcidid><orcidid>https://orcid.org/0000-0002-5456-1319</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-10, Vol.68 (10), p.6585-6604
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2022_3176935
source IEEE Electronic Library (IEL)
subjects Additives
Algebra
Atmospheric measurements
Commuting
Games
Graphs
Haemers bound
Lovász theta function
Operators (mathematics)
Particle measurements
Quantum entanglement
Quantum independence number
Shannon capacities
Upper bound
Upper bounds
title On a Tracial Version of Haemers Bound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Tracial%20Version%20of%20Haemers%20Bound&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gao,%20Li&rft.date=2022-10-01&rft.volume=68&rft.issue=10&rft.spage=6585&rft.epage=6604&rft.pages=6585-6604&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3176935&rft_dat=%3Cproquest_RIE%3E2714953857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714953857&rft_id=info:pmid/&rft_ieee_id=9779745&rfr_iscdi=true