On a Tracial Version of Haemers Bound
We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over \mathbb {C} ) and prove that the generalization upper...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-10, Vol.68 (10), p.6585-6604 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6604 |
---|---|
container_issue | 10 |
container_start_page | 6585 |
container_title | IEEE transactions on information theory |
container_volume | 68 |
creator | Gao, Li Gribling, Sander Li, Yinan |
description | We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over \mathbb {C} ) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number. |
doi_str_mv | 10.1109/TIT.2022.3176935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2022_3176935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779745</ieee_id><sourcerecordid>2714953857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuCeNw1mcwkm6OWaguFXlavIbubhS3tbk3ag__elBZPw8e8bwYeY4-CF0Jw81otqwI4QCGFVkbSFZsIIp0bRXjNJpyLMjeI5S27i3GTIpKACXtZD5nLquCa3m2zbx9iPw7Z2GUL53cpZe_jcWjv2U3nttE_XOaUfX3Mq9kiX60_l7O3Vd4A4iFviDqAFlDxtu40OtA1bzHtJKFHkKYTUgH3RFIaUE6VrlVQl41zrnYop-z5fHcfxp-jjwe7GY9hSC8taIGGZEk6UfxMNWGMMfjO7kO_c-HXCm5PMmySYU8y7EVGqjydK733_h83WhuNJP8Af4VXng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714953857</pqid></control><display><type>article</type><title>On a Tracial Version of Haemers Bound</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Li ; Gribling, Sander ; Li, Yinan</creator><creatorcontrib>Gao, Li ; Gribling, Sander ; Li, Yinan</creatorcontrib><description>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over <inline-formula> <tex-math notation="LaTeX">\mathbb {C} </tex-math></inline-formula>) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3176935</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Algebra ; Atmospheric measurements ; Commuting ; Games ; Graphs ; Haemers bound ; Lovász theta function ; Operators (mathematics) ; Particle measurements ; Quantum entanglement ; Quantum independence number ; Shannon capacities ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2022-10, Vol.68 (10), p.6585-6604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</cites><orcidid>0000-0002-9220-0119 ; 0000-0002-5456-1319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Gribling, Sander</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><title>On a Tracial Version of Haemers Bound</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over <inline-formula> <tex-math notation="LaTeX">\mathbb {C} </tex-math></inline-formula>) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</description><subject>Additives</subject><subject>Algebra</subject><subject>Atmospheric measurements</subject><subject>Commuting</subject><subject>Games</subject><subject>Graphs</subject><subject>Haemers bound</subject><subject>Lovász theta function</subject><subject>Operators (mathematics)</subject><subject>Particle measurements</subject><subject>Quantum entanglement</subject><subject>Quantum independence number</subject><subject>Shannon capacities</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuCeNw1mcwkm6OWaguFXlavIbubhS3tbk3ag__elBZPw8e8bwYeY4-CF0Jw81otqwI4QCGFVkbSFZsIIp0bRXjNJpyLMjeI5S27i3GTIpKACXtZD5nLquCa3m2zbx9iPw7Z2GUL53cpZe_jcWjv2U3nttE_XOaUfX3Mq9kiX60_l7O3Vd4A4iFviDqAFlDxtu40OtA1bzHtJKFHkKYTUgH3RFIaUE6VrlVQl41zrnYop-z5fHcfxp-jjwe7GY9hSC8taIGGZEk6UfxMNWGMMfjO7kO_c-HXCm5PMmySYU8y7EVGqjydK733_h83WhuNJP8Af4VXng</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gao, Li</creator><creator>Gribling, Sander</creator><creator>Li, Yinan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9220-0119</orcidid><orcidid>https://orcid.org/0000-0002-5456-1319</orcidid></search><sort><creationdate>20221001</creationdate><title>On a Tracial Version of Haemers Bound</title><author>Gao, Li ; Gribling, Sander ; Li, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c55f22d2460dbf74a27b0d4244354e4239f13620e5533926a68ad62b8caaaba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Algebra</topic><topic>Atmospheric measurements</topic><topic>Commuting</topic><topic>Games</topic><topic>Graphs</topic><topic>Haemers bound</topic><topic>Lovász theta function</topic><topic>Operators (mathematics)</topic><topic>Particle measurements</topic><topic>Quantum entanglement</topic><topic>Quantum independence number</topic><topic>Shannon capacities</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Gribling, Sander</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Li</au><au>Gribling, Sander</au><au>Li, Yinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Tracial Version of Haemers Bound</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>68</volume><issue>10</issue><spage>6585</spage><epage>6604</epage><pages>6585-6604</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over <inline-formula> <tex-math notation="LaTeX">\mathbb {C} </tex-math></inline-formula>) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lovász theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3176935</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9220-0119</orcidid><orcidid>https://orcid.org/0000-0002-5456-1319</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2022-10, Vol.68 (10), p.6585-6604 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2022_3176935 |
source | IEEE Electronic Library (IEL) |
subjects | Additives Algebra Atmospheric measurements Commuting Games Graphs Haemers bound Lovász theta function Operators (mathematics) Particle measurements Quantum entanglement Quantum independence number Shannon capacities Upper bound Upper bounds |
title | On a Tracial Version of Haemers Bound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Tracial%20Version%20of%20Haemers%20Bound&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gao,%20Li&rft.date=2022-10-01&rft.volume=68&rft.issue=10&rft.spage=6585&rft.epage=6604&rft.pages=6585-6604&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3176935&rft_dat=%3Cproquest_RIE%3E2714953857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714953857&rft_id=info:pmid/&rft_ieee_id=9779745&rfr_iscdi=true |