Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning

We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-09, Vol.68 (9), p.5637-5656
Hauptverfasser: Aharoni, Ziv, Sabag, Oron, Permuter, Haim H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5656
container_issue 9
container_start_page 5637
container_title IEEE transactions on information theory
container_volume 68
creator Aharoni, Ziv
Sabag, Oron
Permuter, Haim H.
description We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.
doi_str_mv 10.1109/TIT.2022.3168729
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2022_3168729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760515</ieee_id><sourcerecordid>2703132459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7m_08lmC1EBBKxWPYbCZtapvU3VTovzelxdMw8D7vDA8hj8AmAMy-LOfLCWecT1JQRnN7RUYgpU6skuKajBgDk1ghzC25i3EzrEICH5HFDLEqnf-mmds73_RH2tV0Hpt2RbO1a1vcRvrV9Guau7BCOt3u167Env42ji6waesueNxh29McXWgH7p7c1G4b8eEyx-Rz9rrM3pP8422eTfPEcwt9whm4SmpfaWNZJaTwpjKCK-8UiBqMU54rlzKEsjaV0l6VpSit0ZUZHgaWjsnzuXcfup8Dxr7YdIfQDicLrlkKKRfSDil2TvnQxRiwLvah2blwLIAVJ3PFYK44mSsu5gbk6Yw0iPgft1oxCTL9A5P6aRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703132459</pqid></control><display><type>article</type><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</creator><creatorcontrib>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</creatorcontrib><description>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3168729</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; channel capacity ; Channels ; Coding ; Dynamic programming ; Encoding ; Exact solutions ; Feedback ; Feedback capacity ; Heuristic algorithms ; Ising channels ; Ising model ; Learning ; Lower bounds ; Markov decision process (MDP) ; Markov processes ; Mathematical analysis ; Neural networks ; Power capacitors ; Random variables ; Reinforcement learning ; reinforcement learning (RL) ; Tightness ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2022-09, Vol.68 (9), p.5637-5656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</citedby><cites>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</cites><orcidid>0000-0003-0204-4034 ; 0000-0003-3170-3190 ; 0000-0002-7907-1463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760515$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760515$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aharoni, Ziv</creatorcontrib><creatorcontrib>Sabag, Oron</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>channel capacity</subject><subject>Channels</subject><subject>Coding</subject><subject>Dynamic programming</subject><subject>Encoding</subject><subject>Exact solutions</subject><subject>Feedback</subject><subject>Feedback capacity</subject><subject>Heuristic algorithms</subject><subject>Ising channels</subject><subject>Ising model</subject><subject>Learning</subject><subject>Lower bounds</subject><subject>Markov decision process (MDP)</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Power capacitors</subject><subject>Random variables</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>Tightness</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7m_08lmC1EBBKxWPYbCZtapvU3VTovzelxdMw8D7vDA8hj8AmAMy-LOfLCWecT1JQRnN7RUYgpU6skuKajBgDk1ghzC25i3EzrEICH5HFDLEqnf-mmds73_RH2tV0Hpt2RbO1a1vcRvrV9Guau7BCOt3u167Env42ji6waesueNxh29McXWgH7p7c1G4b8eEyx-Rz9rrM3pP8422eTfPEcwt9whm4SmpfaWNZJaTwpjKCK-8UiBqMU54rlzKEsjaV0l6VpSit0ZUZHgaWjsnzuXcfup8Dxr7YdIfQDicLrlkKKRfSDil2TvnQxRiwLvah2blwLIAVJ3PFYK44mSsu5gbk6Yw0iPgft1oxCTL9A5P6aRs</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Aharoni, Ziv</creator><creator>Sabag, Oron</creator><creator>Permuter, Haim H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0204-4034</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><orcidid>https://orcid.org/0000-0002-7907-1463</orcidid></search><sort><creationdate>20220901</creationdate><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><author>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>channel capacity</topic><topic>Channels</topic><topic>Coding</topic><topic>Dynamic programming</topic><topic>Encoding</topic><topic>Exact solutions</topic><topic>Feedback</topic><topic>Feedback capacity</topic><topic>Heuristic algorithms</topic><topic>Ising channels</topic><topic>Ising model</topic><topic>Learning</topic><topic>Lower bounds</topic><topic>Markov decision process (MDP)</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Power capacitors</topic><topic>Random variables</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>Tightness</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aharoni, Ziv</creatorcontrib><creatorcontrib>Sabag, Oron</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aharoni, Ziv</au><au>Sabag, Oron</au><au>Permuter, Haim H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>68</volume><issue>9</issue><spage>5637</spage><epage>5656</epage><pages>5637-5656</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3168729</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0204-4034</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><orcidid>https://orcid.org/0000-0002-7907-1463</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-09, Vol.68 (9), p.5637-5656
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2022_3168729
source IEEE Electronic Library (IEL)
subjects Algorithms
Asymptotic properties
channel capacity
Channels
Coding
Dynamic programming
Encoding
Exact solutions
Feedback
Feedback capacity
Heuristic algorithms
Ising channels
Ising model
Learning
Lower bounds
Markov decision process (MDP)
Markov processes
Mathematical analysis
Neural networks
Power capacitors
Random variables
Reinforcement learning
reinforcement learning (RL)
Tightness
Upper bound
Upper bounds
title Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20Capacity%20of%20Ising%20Channels%20With%20Large%20Alphabet%20via%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aharoni,%20Ziv&rft.date=2022-09-01&rft.volume=68&rft.issue=9&rft.spage=5637&rft.epage=5656&rft.pages=5637-5656&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3168729&rft_dat=%3Cproquest_RIE%3E2703132459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703132459&rft_id=info:pmid/&rft_ieee_id=9760515&rfr_iscdi=true