Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning
We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-09, Vol.68 (9), p.5637-5656 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5656 |
---|---|
container_issue | 9 |
container_start_page | 5637 |
container_title | IEEE transactions on information theory |
container_volume | 68 |
creator | Aharoni, Ziv Sabag, Oron Permuter, Haim H. |
description | We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme. |
doi_str_mv | 10.1109/TIT.2022.3168729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2022_3168729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760515</ieee_id><sourcerecordid>2703132459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7m_08lmC1EBBKxWPYbCZtapvU3VTovzelxdMw8D7vDA8hj8AmAMy-LOfLCWecT1JQRnN7RUYgpU6skuKajBgDk1ghzC25i3EzrEICH5HFDLEqnf-mmds73_RH2tV0Hpt2RbO1a1vcRvrV9Guau7BCOt3u167Env42ji6waesueNxh29McXWgH7p7c1G4b8eEyx-Rz9rrM3pP8422eTfPEcwt9whm4SmpfaWNZJaTwpjKCK-8UiBqMU54rlzKEsjaV0l6VpSit0ZUZHgaWjsnzuXcfup8Dxr7YdIfQDicLrlkKKRfSDil2TvnQxRiwLvah2blwLIAVJ3PFYK44mSsu5gbk6Yw0iPgft1oxCTL9A5P6aRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703132459</pqid></control><display><type>article</type><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</creator><creatorcontrib>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</creatorcontrib><description>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3168729</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; channel capacity ; Channels ; Coding ; Dynamic programming ; Encoding ; Exact solutions ; Feedback ; Feedback capacity ; Heuristic algorithms ; Ising channels ; Ising model ; Learning ; Lower bounds ; Markov decision process (MDP) ; Markov processes ; Mathematical analysis ; Neural networks ; Power capacitors ; Random variables ; Reinforcement learning ; reinforcement learning (RL) ; Tightness ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2022-09, Vol.68 (9), p.5637-5656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</citedby><cites>FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</cites><orcidid>0000-0003-0204-4034 ; 0000-0003-3170-3190 ; 0000-0002-7907-1463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760515$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760515$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aharoni, Ziv</creatorcontrib><creatorcontrib>Sabag, Oron</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>channel capacity</subject><subject>Channels</subject><subject>Coding</subject><subject>Dynamic programming</subject><subject>Encoding</subject><subject>Exact solutions</subject><subject>Feedback</subject><subject>Feedback capacity</subject><subject>Heuristic algorithms</subject><subject>Ising channels</subject><subject>Ising model</subject><subject>Learning</subject><subject>Lower bounds</subject><subject>Markov decision process (MDP)</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Power capacitors</subject><subject>Random variables</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>Tightness</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7m_08lmC1EBBKxWPYbCZtapvU3VTovzelxdMw8D7vDA8hj8AmAMy-LOfLCWecT1JQRnN7RUYgpU6skuKajBgDk1ghzC25i3EzrEICH5HFDLEqnf-mmds73_RH2tV0Hpt2RbO1a1vcRvrV9Guau7BCOt3u167Env42ji6waesueNxh29McXWgH7p7c1G4b8eEyx-Rz9rrM3pP8422eTfPEcwt9whm4SmpfaWNZJaTwpjKCK-8UiBqMU54rlzKEsjaV0l6VpSit0ZUZHgaWjsnzuXcfup8Dxr7YdIfQDicLrlkKKRfSDil2TvnQxRiwLvah2blwLIAVJ3PFYK44mSsu5gbk6Yw0iPgft1oxCTL9A5P6aRs</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Aharoni, Ziv</creator><creator>Sabag, Oron</creator><creator>Permuter, Haim H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0204-4034</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><orcidid>https://orcid.org/0000-0002-7907-1463</orcidid></search><sort><creationdate>20220901</creationdate><title>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</title><author>Aharoni, Ziv ; Sabag, Oron ; Permuter, Haim H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-201ad57cd7890d454c8d8426ca614f18a6c26a30e1bf8d67c6bb4b987d8dba103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>channel capacity</topic><topic>Channels</topic><topic>Coding</topic><topic>Dynamic programming</topic><topic>Encoding</topic><topic>Exact solutions</topic><topic>Feedback</topic><topic>Feedback capacity</topic><topic>Heuristic algorithms</topic><topic>Ising channels</topic><topic>Ising model</topic><topic>Learning</topic><topic>Lower bounds</topic><topic>Markov decision process (MDP)</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Power capacitors</topic><topic>Random variables</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>Tightness</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aharoni, Ziv</creatorcontrib><creatorcontrib>Sabag, Oron</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aharoni, Ziv</au><au>Sabag, Oron</au><au>Permuter, Haim H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>68</volume><issue>9</issue><spage>5637</spage><epage>5656</epage><pages>5637-5656</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We propose a new method to compute the feedback capacity of unifilar finite state channels (FSCs) with memory using reinforcement learning (RL). The feedback capacity was previously estimated using its formulation as a Markov decision process (MDP) with dynamic programming (DP) algorithms. However, their computational complexity grows exponentially with the channel alphabet size. Therefore, we use RL, and specifically, its ability to parameterize value functions and policies with neural networks, to evaluate numerically the feedback capacity of channels with a large alphabet size. The outcome of the RL algorithm is a numerical lower bound on the feedback capacity, which is used to reveal the structure of the optimal solution. The structure is modeled by a graph-based auxiliary random variable that is utilized to derive an analytic upper bound on the feedback capacity with the duality bound. The capacity computation is concluded by verifying the tightness of the upper bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR) invariant. We demonstrate this method on the Ising channel with an arbitrary alphabet size. For an alphabet size smaller than or equal to 8, we derive the analytic solution of the capacity. Next, the structure of the numerical solution is used to deduce a simple coding scheme that achieves the feedback capacity and serves as a lower bound for larger alphabets. For an alphabet size greater than 8, we present an upper bound on the feedback capacity. For an asymptotically large alphabet size, we present an asymptotic optimal coding scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3168729</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0204-4034</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><orcidid>https://orcid.org/0000-0002-7907-1463</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2022-09, Vol.68 (9), p.5637-5656 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2022_3168729 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asymptotic properties channel capacity Channels Coding Dynamic programming Encoding Exact solutions Feedback Feedback capacity Heuristic algorithms Ising channels Ising model Learning Lower bounds Markov decision process (MDP) Markov processes Mathematical analysis Neural networks Power capacitors Random variables Reinforcement learning reinforcement learning (RL) Tightness Upper bound Upper bounds |
title | Feedback Capacity of Ising Channels With Large Alphabet via Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20Capacity%20of%20Ising%20Channels%20With%20Large%20Alphabet%20via%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aharoni,%20Ziv&rft.date=2022-09-01&rft.volume=68&rft.issue=9&rft.spage=5637&rft.epage=5656&rft.pages=5637-5656&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3168729&rft_dat=%3Cproquest_RIE%3E2703132459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703132459&rft_id=info:pmid/&rft_ieee_id=9760515&rfr_iscdi=true |