Multi-Marginal Optimal Transport and Probabilistic Graphical Models

We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-07, Vol.67 (7), p.4647-4668
Hauptverfasser: Haasler, Isabel, Singh, Rahul, Zhang, Qinsheng, Karlsson, Johan, Chen, Yongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4668
container_issue 7
container_start_page 4647
container_title IEEE transactions on information theory
container_volume 67
creator Haasler, Isabel
Singh, Rahul
Zhang, Qinsheng
Karlsson, Johan
Chen, Yongxin
description We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.
doi_str_mv 10.1109/TIT.2021.3077465
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2021_3077465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422971</ieee_id><sourcerecordid>2541476602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKd3wcvAc2d-NslxTJ2DjXmoXkOatFtmXWrSIv73ZnTs9PjC5z3e9wFwj-AUISifimUxxRCjKYGc05xdgBFijGcyZ_QSjCBEIpOUimtwE-M-nZQhPALzdd90LlvrsHUH3Uw2bee-kxZBH2LrQzfRBzt5D77UpWtc7JyZLIJud84kau1t1cRbcFXrJlZ3Jx2Dj9eXYv6WrTaL5Xy2ygzhqMsEYalLKRGxZV5rgrXAkOvcclFqKYymRmhsac05tALx9JbBJLfSSGhlicgYZENu_K3avlRtSFXDn_LaqWf3OVM-bNVXt1NYCs6O_OPAt8H_9FXs1N73IX0ZFWYUUZ7nECcKDpQJPsZQ1edcBNVxWpWmVcdp1WnaZHkYLK6qqjMuKcaSI_IPIXtz8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541476602</pqid></control><display><type>article</type><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</creator><creatorcontrib>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</creatorcontrib><description>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</description><identifier>ISSN: 0018-9448</identifier><identifier>ISSN: 1557-9654</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3077465</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian inference ; belief propagation ; Entropy ; Graphical models ; Heuristic algorithms ; Inference algorithms ; iterative scaling ; Machine learning algorithms ; norm-product ; Optimal transport ; probabilistic graphical models ; Probabilistic inference ; Probabilistic logic ; Statistical inference</subject><ispartof>IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4647-4668</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</citedby><cites>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</cites><orcidid>0000-0001-5158-9255 ; 0000-0002-2484-0181 ; 0000-0002-1459-6365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9422971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298751$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Haasler, Isabel</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>belief propagation</subject><subject>Entropy</subject><subject>Graphical models</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>iterative scaling</subject><subject>Machine learning algorithms</subject><subject>norm-product</subject><subject>Optimal transport</subject><subject>probabilistic graphical models</subject><subject>Probabilistic inference</subject><subject>Probabilistic logic</subject><subject>Statistical inference</subject><issn>0018-9448</issn><issn>1557-9654</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAcxYMoOKd3wcvAc2d-NslxTJ2DjXmoXkOatFtmXWrSIv73ZnTs9PjC5z3e9wFwj-AUISifimUxxRCjKYGc05xdgBFijGcyZ_QSjCBEIpOUimtwE-M-nZQhPALzdd90LlvrsHUH3Uw2bee-kxZBH2LrQzfRBzt5D77UpWtc7JyZLIJud84kau1t1cRbcFXrJlZ3Jx2Dj9eXYv6WrTaL5Xy2ygzhqMsEYalLKRGxZV5rgrXAkOvcclFqKYymRmhsac05tALx9JbBJLfSSGhlicgYZENu_K3avlRtSFXDn_LaqWf3OVM-bNVXt1NYCs6O_OPAt8H_9FXs1N73IX0ZFWYUUZ7nECcKDpQJPsZQ1edcBNVxWpWmVcdp1WnaZHkYLK6qqjMuKcaSI_IPIXtz8Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Haasler, Isabel</creator><creator>Singh, Rahul</creator><creator>Zhang, Qinsheng</creator><creator>Karlsson, Johan</creator><creator>Chen, Yongxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-5158-9255</orcidid><orcidid>https://orcid.org/0000-0002-2484-0181</orcidid><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><author>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>belief propagation</topic><topic>Entropy</topic><topic>Graphical models</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>iterative scaling</topic><topic>Machine learning algorithms</topic><topic>norm-product</topic><topic>Optimal transport</topic><topic>probabilistic graphical models</topic><topic>Probabilistic inference</topic><topic>Probabilistic logic</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haasler, Isabel</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haasler, Isabel</au><au>Singh, Rahul</au><au>Zhang, Qinsheng</au><au>Karlsson, Johan</au><au>Chen, Yongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>67</volume><issue>7</issue><spage>4647</spage><epage>4668</epage><pages>4647-4668</pages><issn>0018-9448</issn><issn>1557-9654</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3077465</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5158-9255</orcidid><orcidid>https://orcid.org/0000-0002-2484-0181</orcidid><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4647-4668
issn 0018-9448
1557-9654
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2021_3077465
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayesian analysis
Bayesian inference
belief propagation
Entropy
Graphical models
Heuristic algorithms
Inference algorithms
iterative scaling
Machine learning algorithms
norm-product
Optimal transport
probabilistic graphical models
Probabilistic inference
Probabilistic logic
Statistical inference
title Multi-Marginal Optimal Transport and Probabilistic Graphical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Marginal%20Optimal%20Transport%20and%20Probabilistic%20Graphical%20Models&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Haasler,%20Isabel&rft.date=2021-07-01&rft.volume=67&rft.issue=7&rft.spage=4647&rft.epage=4668&rft.pages=4647-4668&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3077465&rft_dat=%3Cproquest_RIE%3E2541476602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541476602&rft_id=info:pmid/&rft_ieee_id=9422971&rfr_iscdi=true