Multi-Marginal Optimal Transport and Probabilistic Graphical Models
We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-07, Vol.67 (7), p.4647-4668 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4668 |
---|---|
container_issue | 7 |
container_start_page | 4647 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Haasler, Isabel Singh, Rahul Zhang, Qinsheng Karlsson, Johan Chen, Yongxin |
description | We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results. |
doi_str_mv | 10.1109/TIT.2021.3077465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2021_3077465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422971</ieee_id><sourcerecordid>2541476602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKd3wcvAc2d-NslxTJ2DjXmoXkOatFtmXWrSIv73ZnTs9PjC5z3e9wFwj-AUISifimUxxRCjKYGc05xdgBFijGcyZ_QSjCBEIpOUimtwE-M-nZQhPALzdd90LlvrsHUH3Uw2bee-kxZBH2LrQzfRBzt5D77UpWtc7JyZLIJud84kau1t1cRbcFXrJlZ3Jx2Dj9eXYv6WrTaL5Xy2ygzhqMsEYalLKRGxZV5rgrXAkOvcclFqKYymRmhsac05tALx9JbBJLfSSGhlicgYZENu_K3avlRtSFXDn_LaqWf3OVM-bNVXt1NYCs6O_OPAt8H_9FXs1N73IX0ZFWYUUZ7nECcKDpQJPsZQ1edcBNVxWpWmVcdp1WnaZHkYLK6qqjMuKcaSI_IPIXtz8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541476602</pqid></control><display><type>article</type><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</creator><creatorcontrib>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</creatorcontrib><description>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</description><identifier>ISSN: 0018-9448</identifier><identifier>ISSN: 1557-9654</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3077465</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian inference ; belief propagation ; Entropy ; Graphical models ; Heuristic algorithms ; Inference algorithms ; iterative scaling ; Machine learning algorithms ; norm-product ; Optimal transport ; probabilistic graphical models ; Probabilistic inference ; Probabilistic logic ; Statistical inference</subject><ispartof>IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4647-4668</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</citedby><cites>FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</cites><orcidid>0000-0001-5158-9255 ; 0000-0002-2484-0181 ; 0000-0002-1459-6365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9422971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298751$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Haasler, Isabel</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>belief propagation</subject><subject>Entropy</subject><subject>Graphical models</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>iterative scaling</subject><subject>Machine learning algorithms</subject><subject>norm-product</subject><subject>Optimal transport</subject><subject>probabilistic graphical models</subject><subject>Probabilistic inference</subject><subject>Probabilistic logic</subject><subject>Statistical inference</subject><issn>0018-9448</issn><issn>1557-9654</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAcxYMoOKd3wcvAc2d-NslxTJ2DjXmoXkOatFtmXWrSIv73ZnTs9PjC5z3e9wFwj-AUISifimUxxRCjKYGc05xdgBFijGcyZ_QSjCBEIpOUimtwE-M-nZQhPALzdd90LlvrsHUH3Uw2bee-kxZBH2LrQzfRBzt5D77UpWtc7JyZLIJud84kau1t1cRbcFXrJlZ3Jx2Dj9eXYv6WrTaL5Xy2ygzhqMsEYalLKRGxZV5rgrXAkOvcclFqKYymRmhsac05tALx9JbBJLfSSGhlicgYZENu_K3avlRtSFXDn_LaqWf3OVM-bNVXt1NYCs6O_OPAt8H_9FXs1N73IX0ZFWYUUZ7nECcKDpQJPsZQ1edcBNVxWpWmVcdp1WnaZHkYLK6qqjMuKcaSI_IPIXtz8Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Haasler, Isabel</creator><creator>Singh, Rahul</creator><creator>Zhang, Qinsheng</creator><creator>Karlsson, Johan</creator><creator>Chen, Yongxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-5158-9255</orcidid><orcidid>https://orcid.org/0000-0002-2484-0181</orcidid><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</title><author>Haasler, Isabel ; Singh, Rahul ; Zhang, Qinsheng ; Karlsson, Johan ; Chen, Yongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-835654b913db6fa32a8207a6d78ba98ca4c8a2d4f770d817110c236d9c90d9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>belief propagation</topic><topic>Entropy</topic><topic>Graphical models</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>iterative scaling</topic><topic>Machine learning algorithms</topic><topic>norm-product</topic><topic>Optimal transport</topic><topic>probabilistic graphical models</topic><topic>Probabilistic inference</topic><topic>Probabilistic logic</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haasler, Isabel</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haasler, Isabel</au><au>Singh, Rahul</au><au>Zhang, Qinsheng</au><au>Karlsson, Johan</au><au>Chen, Yongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Marginal Optimal Transport and Probabilistic Graphical Models</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>67</volume><issue>7</issue><spage>4647</spage><epage>4668</epage><pages>4647-4668</pages><issn>0018-9448</issn><issn>1557-9654</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study multi-marginal optimal transport problems from a probabilistic graphical model perspective. We point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized multi-marginal optimal transport is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for multi-marginal optimal transport by leveraging the well-developed algorithms in Bayesian inference. Several numerical examples are provided to highlight the results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3077465</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5158-9255</orcidid><orcidid>https://orcid.org/0000-0002-2484-0181</orcidid><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4647-4668 |
issn | 0018-9448 1557-9654 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2021_3077465 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayesian analysis Bayesian inference belief propagation Entropy Graphical models Heuristic algorithms Inference algorithms iterative scaling Machine learning algorithms norm-product Optimal transport probabilistic graphical models Probabilistic inference Probabilistic logic Statistical inference |
title | Multi-Marginal Optimal Transport and Probabilistic Graphical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Marginal%20Optimal%20Transport%20and%20Probabilistic%20Graphical%20Models&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Haasler,%20Isabel&rft.date=2021-07-01&rft.volume=67&rft.issue=7&rft.spage=4647&rft.epage=4668&rft.pages=4647-4668&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3077465&rft_dat=%3Cproquest_RIE%3E2541476602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541476602&rft_id=info:pmid/&rft_ieee_id=9422971&rfr_iscdi=true |