Improved Schemes for Asymptotically Optimal Repair of MDS Codes

We consider (\text {n}, \text {k}, \text {l}) MDS codes of length n , dimension k , and subpacketization l over a finite field {\it\text { F }} . A codeword of such a code consists of n column-vectors of length l over {\it\text { F }} , with the property that any k of them suffice to recover the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-08, Vol.67 (8), p.5051-5068
Hauptverfasser: Chowdhury, Ameera, Vardy, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5068
container_issue 8
container_start_page 5051
container_title IEEE transactions on information theory
container_volume 67
creator Chowdhury, Ameera
Vardy, Alexander
description We consider (\text {n}, \text {k}, \text {l}) MDS codes of length n , dimension k , and subpacketization l over a finite field {\it\text { F }} . A codeword of such a code consists of n column-vectors of length l over {\it\text { F }} , with the property that any k of them suffice to recover the entire codeword. Each of these n vectors may be stored on a separate node in a network. If one of the n nodes fails, we can recover its content by downloading symbols from the surviving nodes, and the total number of symbols downloaded in the worst case is called the repair bandwidth of the code. By the cut-set bound, the repair bandwidth of an (\text {n},\text {k},\text {l}) MDS code is at least \text {l}(\text {n}{-}1)/(\text {n}{-}\text {k}) . There are several constructions of MDS codes whose repair bandwidth meets or asymptotically meets the cut-set bound. For example, letting \text {r}=\text {n}-\text {k} denote the number of parities, Ye and Barg constructed (\text {n},\text {k},\text {r}^{\text {n}}) Reed-Solomon codes that asymptotically meet the cut-set bound, Ye and Barg also constructed optimal-bandwidth and optimal-update (\text {n},\text {k},\text {r}^{\text {n}}) MDS codes. Wang, Tamo, and Bruck constructed optimal-bandwidth (\text {n}, \text {k}, \text {r}^{\text {n}/(\text {r}+1)}) MDS codes, and these codes have the smallest known subpacketization for optimal-bandwidth MDS codes. A key idea in all these constructions is to represent certain integers in base r . We show how this technique can be refined to improve the subpacketization of the two MDS code constructions by Ye and Barg, while achieving asymptotically optimal repair bandwidth. Specifically, when \text {r}=\text {s}^{\text {m}} for an integer s , we obtain an
doi_str_mv 10.1109/TIT.2021.3071447
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2021_3071447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9400413</ieee_id><sourcerecordid>2552160221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ee22ec18a4ce388e0690af39263bb712837e62bc55eafcfd44d0f586eb5af8c03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzX8nmJKV-BSoFW8_LZjOLKYmJu6nQf29Ki6dh4HlnXh5CbhnMGIP8YVNsZhw4mwnImJTZGZkwpbIkT5U8JxMAppNcSn1JrmLcjqtUjE_IY9H2ofvFiq7dF7YYqe8Cncd92w_dUDvbNHu66oe6tQ39wN7WgXaevj-t6aKrMF6TC2-biDenOSWfL8-bxVuyXL0Wi_kycUKIIUHkHB3TVjoUWiOkOVgvcp6KsswY1yLDlJdOKbTe-UrKCrzSKZbKeu1ATMn98e7Y9meHcTDbbhe-x5eGK8VZCpyzkYIj5UIXY0Bv-jA2D3vDwBw0mVGTOWgyJ01j5O4YqRHxH88lgGRC_AE1qmKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552160221</pqid></control><display><type>article</type><title>Improved Schemes for Asymptotically Optimal Repair of MDS Codes</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Chowdhury, Ameera ; Vardy, Alexander</creator><creatorcontrib>Chowdhury, Ameera ; Vardy, Alexander</creatorcontrib><description><![CDATA[We consider <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {l}) </tex-math></inline-formula> MDS codes of length n , dimension k , and subpacketization l over a finite field <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>. A codeword of such a code consists of n column-vectors of length l over <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>, with the property that any k of them suffice to recover the entire codeword. Each of these n vectors may be stored on a separate node in a network. If one of the n nodes fails, we can recover its content by downloading symbols from the surviving nodes, and the total number of symbols downloaded in the worst case is called the repair bandwidth of the code. By the cut-set bound, the repair bandwidth of an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {l}) </tex-math></inline-formula> MDS code is at least <inline-formula> <tex-math notation="LaTeX">\text {l}(\text {n}{-}1)/(\text {n}{-}\text {k}) </tex-math></inline-formula>. There are several constructions of MDS codes whose repair bandwidth meets or asymptotically meets the cut-set bound. For example, letting <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {n}-\text {k} </tex-math></inline-formula> denote the number of parities, Ye and Barg constructed <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> Reed-Solomon codes that asymptotically meet the cut-set bound, Ye and Barg also constructed optimal-bandwidth and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> MDS codes. Wang, Tamo, and Bruck constructed optimal-bandwidth <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {r}^{\text {n}/(\text {r}+1)}) </tex-math></inline-formula> MDS codes, and these codes have the smallest known subpacketization for optimal-bandwidth MDS codes. A key idea in all these constructions is to represent certain integers in base r . We show how this technique can be refined to improve the subpacketization of the two MDS code constructions by Ye and Barg, while achieving asymptotically optimal repair bandwidth. Specifically, when <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {s}^{\text {m}} </tex-math></inline-formula> for an integer s , we obtain an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon code and an optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS code, both having asymptotically optimal repair bandwidth. Thus for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula>, for example, we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {m}+\text {n}-1} </tex-math></inline-formula> rather than <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}} </tex-math></inline-formula> in the original constructions by Ye and Barg. When r is not an integral power, we can still obtain <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon codes and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS codes by choosing positive integers s and m such that <inline-formula> <tex-math notation="LaTeX">\text {s}^{\text {m}} \leqslant r </tex-math></inline-formula>. In this case, however, the resulting codes have bandwidth that is near-optimal rather than asymptotically optimal. We also present an extension of this idea to reduce the subpacketization of the Wang-Tamo-Bruck construction while achieving a repair-by-transfer scheme with asymptotically optimal repair bandwidth. For example, for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula> we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {k}/\text {r}+\text {m}-1} </tex-math></inline-formula>, which significantly improves upon the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}/(\text {r}+1)} </tex-math></inline-formula> in the Wang-Tamo-Bruck construction. Based on the foregoing examples, we believe our approach may be generally useful in reducing the subpacketization of MDS code constructions that utilize r -ary expansion.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3071447</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Bandwidth ; Bandwidths ; Codes ; codes for storage ; Drives ; Encoding ; Error correction codes ; error-correcting codes ; Fields (mathematics) ; Integers ; Maintenance engineering ; Manganese ; Nodes ; Reed–Solomon codes ; Reliability ; Repair ; Symbols</subject><ispartof>IEEE transactions on information theory, 2021-08, Vol.67 (8), p.5051-5068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ee22ec18a4ce388e0690af39263bb712837e62bc55eafcfd44d0f586eb5af8c03</citedby><cites>FETCH-LOGICAL-c333t-ee22ec18a4ce388e0690af39263bb712837e62bc55eafcfd44d0f586eb5af8c03</cites><orcidid>0000-0003-3303-9078 ; 0000-0002-9577-8653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9400413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9400413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chowdhury, Ameera</creatorcontrib><creatorcontrib>Vardy, Alexander</creatorcontrib><title>Improved Schemes for Asymptotically Optimal Repair of MDS Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {l}) </tex-math></inline-formula> MDS codes of length n , dimension k , and subpacketization l over a finite field <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>. A codeword of such a code consists of n column-vectors of length l over <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>, with the property that any k of them suffice to recover the entire codeword. Each of these n vectors may be stored on a separate node in a network. If one of the n nodes fails, we can recover its content by downloading symbols from the surviving nodes, and the total number of symbols downloaded in the worst case is called the repair bandwidth of the code. By the cut-set bound, the repair bandwidth of an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {l}) </tex-math></inline-formula> MDS code is at least <inline-formula> <tex-math notation="LaTeX">\text {l}(\text {n}{-}1)/(\text {n}{-}\text {k}) </tex-math></inline-formula>. There are several constructions of MDS codes whose repair bandwidth meets or asymptotically meets the cut-set bound. For example, letting <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {n}-\text {k} </tex-math></inline-formula> denote the number of parities, Ye and Barg constructed <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> Reed-Solomon codes that asymptotically meet the cut-set bound, Ye and Barg also constructed optimal-bandwidth and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> MDS codes. Wang, Tamo, and Bruck constructed optimal-bandwidth <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {r}^{\text {n}/(\text {r}+1)}) </tex-math></inline-formula> MDS codes, and these codes have the smallest known subpacketization for optimal-bandwidth MDS codes. A key idea in all these constructions is to represent certain integers in base r . We show how this technique can be refined to improve the subpacketization of the two MDS code constructions by Ye and Barg, while achieving asymptotically optimal repair bandwidth. Specifically, when <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {s}^{\text {m}} </tex-math></inline-formula> for an integer s , we obtain an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon code and an optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS code, both having asymptotically optimal repair bandwidth. Thus for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula>, for example, we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {m}+\text {n}-1} </tex-math></inline-formula> rather than <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}} </tex-math></inline-formula> in the original constructions by Ye and Barg. When r is not an integral power, we can still obtain <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon codes and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS codes by choosing positive integers s and m such that <inline-formula> <tex-math notation="LaTeX">\text {s}^{\text {m}} \leqslant r </tex-math></inline-formula>. In this case, however, the resulting codes have bandwidth that is near-optimal rather than asymptotically optimal. We also present an extension of this idea to reduce the subpacketization of the Wang-Tamo-Bruck construction while achieving a repair-by-transfer scheme with asymptotically optimal repair bandwidth. For example, for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula> we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {k}/\text {r}+\text {m}-1} </tex-math></inline-formula>, which significantly improves upon the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}/(\text {r}+1)} </tex-math></inline-formula> in the Wang-Tamo-Bruck construction. Based on the foregoing examples, we believe our approach may be generally useful in reducing the subpacketization of MDS code constructions that utilize r -ary expansion.]]></description><subject>Asymptotic properties</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Codes</subject><subject>codes for storage</subject><subject>Drives</subject><subject>Encoding</subject><subject>Error correction codes</subject><subject>error-correcting codes</subject><subject>Fields (mathematics)</subject><subject>Integers</subject><subject>Maintenance engineering</subject><subject>Manganese</subject><subject>Nodes</subject><subject>Reed–Solomon codes</subject><subject>Reliability</subject><subject>Repair</subject><subject>Symbols</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzX8nmJKV-BSoFW8_LZjOLKYmJu6nQf29Ki6dh4HlnXh5CbhnMGIP8YVNsZhw4mwnImJTZGZkwpbIkT5U8JxMAppNcSn1JrmLcjqtUjE_IY9H2ofvFiq7dF7YYqe8Cncd92w_dUDvbNHu66oe6tQ39wN7WgXaevj-t6aKrMF6TC2-biDenOSWfL8-bxVuyXL0Wi_kycUKIIUHkHB3TVjoUWiOkOVgvcp6KsswY1yLDlJdOKbTe-UrKCrzSKZbKeu1ATMn98e7Y9meHcTDbbhe-x5eGK8VZCpyzkYIj5UIXY0Bv-jA2D3vDwBw0mVGTOWgyJ01j5O4YqRHxH88lgGRC_AE1qmKu</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Chowdhury, Ameera</creator><creator>Vardy, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3303-9078</orcidid><orcidid>https://orcid.org/0000-0002-9577-8653</orcidid></search><sort><creationdate>20210801</creationdate><title>Improved Schemes for Asymptotically Optimal Repair of MDS Codes</title><author>Chowdhury, Ameera ; Vardy, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ee22ec18a4ce388e0690af39263bb712837e62bc55eafcfd44d0f586eb5af8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Codes</topic><topic>codes for storage</topic><topic>Drives</topic><topic>Encoding</topic><topic>Error correction codes</topic><topic>error-correcting codes</topic><topic>Fields (mathematics)</topic><topic>Integers</topic><topic>Maintenance engineering</topic><topic>Manganese</topic><topic>Nodes</topic><topic>Reed–Solomon codes</topic><topic>Reliability</topic><topic>Repair</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Ameera</creatorcontrib><creatorcontrib>Vardy, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chowdhury, Ameera</au><au>Vardy, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Schemes for Asymptotically Optimal Repair of MDS Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>67</volume><issue>8</issue><spage>5051</spage><epage>5068</epage><pages>5051-5068</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {l}) </tex-math></inline-formula> MDS codes of length n , dimension k , and subpacketization l over a finite field <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>. A codeword of such a code consists of n column-vectors of length l over <inline-formula> <tex-math notation="LaTeX">{\it\text { F }} </tex-math></inline-formula>, with the property that any k of them suffice to recover the entire codeword. Each of these n vectors may be stored on a separate node in a network. If one of the n nodes fails, we can recover its content by downloading symbols from the surviving nodes, and the total number of symbols downloaded in the worst case is called the repair bandwidth of the code. By the cut-set bound, the repair bandwidth of an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {l}) </tex-math></inline-formula> MDS code is at least <inline-formula> <tex-math notation="LaTeX">\text {l}(\text {n}{-}1)/(\text {n}{-}\text {k}) </tex-math></inline-formula>. There are several constructions of MDS codes whose repair bandwidth meets or asymptotically meets the cut-set bound. For example, letting <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {n}-\text {k} </tex-math></inline-formula> denote the number of parities, Ye and Barg constructed <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> Reed-Solomon codes that asymptotically meet the cut-set bound, Ye and Barg also constructed optimal-bandwidth and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {r}^{\text {n}}) </tex-math></inline-formula> MDS codes. Wang, Tamo, and Bruck constructed optimal-bandwidth <inline-formula> <tex-math notation="LaTeX">(\text {n}, \text {k}, \text {r}^{\text {n}/(\text {r}+1)}) </tex-math></inline-formula> MDS codes, and these codes have the smallest known subpacketization for optimal-bandwidth MDS codes. A key idea in all these constructions is to represent certain integers in base r . We show how this technique can be refined to improve the subpacketization of the two MDS code constructions by Ye and Barg, while achieving asymptotically optimal repair bandwidth. Specifically, when <inline-formula> <tex-math notation="LaTeX">\text {r}=\text {s}^{\text {m}} </tex-math></inline-formula> for an integer s , we obtain an <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon code and an optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS code, both having asymptotically optimal repair bandwidth. Thus for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula>, for example, we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {m}+\text {n}-1} </tex-math></inline-formula> rather than <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}} </tex-math></inline-formula> in the original constructions by Ye and Barg. When r is not an integral power, we can still obtain <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> Reed-Solomon codes and optimal-update <inline-formula> <tex-math notation="LaTeX">(\text {n},\text {k},\text {s}^{\text {m}+\text {n}-1}) </tex-math></inline-formula> MDS codes by choosing positive integers s and m such that <inline-formula> <tex-math notation="LaTeX">\text {s}^{\text {m}} \leqslant r </tex-math></inline-formula>. In this case, however, the resulting codes have bandwidth that is near-optimal rather than asymptotically optimal. We also present an extension of this idea to reduce the subpacketization of the Wang-Tamo-Bruck construction while achieving a repair-by-transfer scheme with asymptotically optimal repair bandwidth. For example, for <inline-formula> <tex-math notation="LaTeX">\text {r} = 2^{\text {m}} </tex-math></inline-formula> we achieve the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{\text {k}/\text {r}+\text {m}-1} </tex-math></inline-formula>, which significantly improves upon the subpacketization of <inline-formula> <tex-math notation="LaTeX">2^{{\it\text { mn}}/(\text {r}+1)} </tex-math></inline-formula> in the Wang-Tamo-Bruck construction. Based on the foregoing examples, we believe our approach may be generally useful in reducing the subpacketization of MDS code constructions that utilize r -ary expansion.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3071447</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3303-9078</orcidid><orcidid>https://orcid.org/0000-0002-9577-8653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-08, Vol.67 (8), p.5051-5068
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2021_3071447
source IEEE/IET Electronic Library (IEL)
subjects Asymptotic properties
Bandwidth
Bandwidths
Codes
codes for storage
Drives
Encoding
Error correction codes
error-correcting codes
Fields (mathematics)
Integers
Maintenance engineering
Manganese
Nodes
Reed–Solomon codes
Reliability
Repair
Symbols
title Improved Schemes for Asymptotically Optimal Repair of MDS Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Schemes%20for%20Asymptotically%20Optimal%20Repair%20of%20MDS%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Chowdhury,%20Ameera&rft.date=2021-08-01&rft.volume=67&rft.issue=8&rft.spage=5051&rft.epage=5068&rft.pages=5051-5068&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3071447&rft_dat=%3Cproquest_RIE%3E2552160221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552160221&rft_id=info:pmid/&rft_ieee_id=9400413&rfr_iscdi=true