Polar Codes' Simplicity, Random Codes' Durability

Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants \pi,\rho >...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-03, Vol.67 (3), p.1478-1508
Hauptverfasser: Wang, Hsin-Po, Duursma, Iwan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1508
container_issue 3
container_start_page 1478
container_title IEEE transactions on information theory
container_volume 67
creator Wang, Hsin-Po
Duursma, Iwan M.
description Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants \pi,\rho >0 such that \pi +2\rho < 1 , we construct a sequence of block codes with block length {N} approaching infinity, block error probability \exp (-{N}^\pi) , code rate {N}^{-\rho } less than the Shannon capacity, and encoding and decoding complexity {O}({N}\log {N}) per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should \pi +2\rho >1 , no such codes exist over generic channels regardless of complexity.
doi_str_mv 10.1109/TIT.2020.3041570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2020_3041570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9274521</ieee_id><sourcerecordid>2490800512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvBgxe3zkySJnuU-lUoKFrPIdnNwpZtd022h_73pmz1NAzvvRnej7FrhCki5A-rxWpKQDDlIFAqOGEjlFJl-UyKUzYCQJ3lQuhzdhHjOq1CIo0YfrSNDZN5W_p4N_mqN11TF3W_v5982m3Zbv6Up12wrm6ScsnOKttEf3WcY_b98ryav2XL99fF_HGZFZzzPtNYapcrjVpKqkCRnvHSgtdCOrSlLFWhOVkuK-FAWlE5dEgFETlSlSv4mN0Od7vQ_ux87M263YVtemlI5KABUoHkgsFVhDbG4CvThXpjw94gmAMYk8CYAxhzBJMiN0Ok9t7_23NSQhLyX8GoXBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490800512</pqid></control><display><type>article</type><title>Polar Codes' Simplicity, Random Codes' Durability</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hsin-Po ; Duursma, Iwan M.</creator><creatorcontrib>Wang, Hsin-Po ; Duursma, Iwan M.</creatorcontrib><description><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3041570</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Block codes ; Capacity planning ; Capacity-achieving codes ; Codes ; Complexity ; Complexity theory ; Decoding ; Error correction ; Error probability ; Kernel ; low-complexity codes ; Memoryless systems ; Polar codes ; random codes</subject><ispartof>IEEE transactions on information theory, 2021-03, Vol.67 (3), p.1478-1508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</citedby><cites>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</cites><orcidid>0000-0002-2436-3944 ; 0000-0003-2574-1510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9274521$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Wang, Hsin-Po</creatorcontrib><creatorcontrib>Duursma, Iwan M.</creatorcontrib><title>Polar Codes' Simplicity, Random Codes' Durability</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></description><subject>Block codes</subject><subject>Capacity planning</subject><subject>Capacity-achieving codes</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Error probability</subject><subject>Kernel</subject><subject>low-complexity codes</subject><subject>Memoryless systems</subject><subject>Polar codes</subject><subject>random codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvBgxe3zkySJnuU-lUoKFrPIdnNwpZtd022h_73pmz1NAzvvRnej7FrhCki5A-rxWpKQDDlIFAqOGEjlFJl-UyKUzYCQJ3lQuhzdhHjOq1CIo0YfrSNDZN5W_p4N_mqN11TF3W_v5982m3Zbv6Up12wrm6ScsnOKttEf3WcY_b98ryav2XL99fF_HGZFZzzPtNYapcrjVpKqkCRnvHSgtdCOrSlLFWhOVkuK-FAWlE5dEgFETlSlSv4mN0Od7vQ_ux87M263YVtemlI5KABUoHkgsFVhDbG4CvThXpjw94gmAMYk8CYAxhzBJMiN0Ok9t7_23NSQhLyX8GoXBs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wang, Hsin-Po</creator><creator>Duursma, Iwan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2436-3944</orcidid><orcidid>https://orcid.org/0000-0003-2574-1510</orcidid></search><sort><creationdate>20210301</creationdate><title>Polar Codes' Simplicity, Random Codes' Durability</title><author>Wang, Hsin-Po ; Duursma, Iwan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Block codes</topic><topic>Capacity planning</topic><topic>Capacity-achieving codes</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Error probability</topic><topic>Kernel</topic><topic>low-complexity codes</topic><topic>Memoryless systems</topic><topic>Polar codes</topic><topic>random codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hsin-Po</creatorcontrib><creatorcontrib>Duursma, Iwan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hsin-Po</au><au>Duursma, Iwan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Codes' Simplicity, Random Codes' Durability</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>67</volume><issue>3</issue><spage>1478</spage><epage>1508</epage><pages>1478-1508</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3041570</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2436-3944</orcidid><orcidid>https://orcid.org/0000-0003-2574-1510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-03, Vol.67 (3), p.1478-1508
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2020_3041570
source IEEE Electronic Library (IEL)
subjects Block codes
Capacity planning
Capacity-achieving codes
Codes
Complexity
Complexity theory
Decoding
Error correction
Error probability
Kernel
low-complexity codes
Memoryless systems
Polar codes
random codes
title Polar Codes' Simplicity, Random Codes' Durability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Codes'%20Simplicity,%20Random%20Codes'%20Durability&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wang,%20Hsin-Po&rft.date=2021-03-01&rft.volume=67&rft.issue=3&rft.spage=1478&rft.epage=1508&rft.pages=1478-1508&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3041570&rft_dat=%3Cproquest_cross%3E2490800512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490800512&rft_id=info:pmid/&rft_ieee_id=9274521&rfr_iscdi=true