Polar Codes' Simplicity, Random Codes' Durability
Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants \pi,\rho >...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-03, Vol.67 (3), p.1478-1508 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1508 |
---|---|
container_issue | 3 |
container_start_page | 1478 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Wang, Hsin-Po Duursma, Iwan M. |
description | Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants \pi,\rho >0 such that \pi +2\rho < 1 , we construct a sequence of block codes with block length {N} approaching infinity, block error probability \exp (-{N}^\pi) , code rate {N}^{-\rho } less than the Shannon capacity, and encoding and decoding complexity {O}({N}\log {N}) per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should \pi +2\rho >1 , no such codes exist over generic channels regardless of complexity. |
doi_str_mv | 10.1109/TIT.2020.3041570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2020_3041570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9274521</ieee_id><sourcerecordid>2490800512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvBgxe3zkySJnuU-lUoKFrPIdnNwpZtd022h_73pmz1NAzvvRnej7FrhCki5A-rxWpKQDDlIFAqOGEjlFJl-UyKUzYCQJ3lQuhzdhHjOq1CIo0YfrSNDZN5W_p4N_mqN11TF3W_v5982m3Zbv6Up12wrm6ScsnOKttEf3WcY_b98ryav2XL99fF_HGZFZzzPtNYapcrjVpKqkCRnvHSgtdCOrSlLFWhOVkuK-FAWlE5dEgFETlSlSv4mN0Od7vQ_ux87M263YVtemlI5KABUoHkgsFVhDbG4CvThXpjw94gmAMYk8CYAxhzBJMiN0Ok9t7_23NSQhLyX8GoXBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490800512</pqid></control><display><type>article</type><title>Polar Codes' Simplicity, Random Codes' Durability</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hsin-Po ; Duursma, Iwan M.</creator><creatorcontrib>Wang, Hsin-Po ; Duursma, Iwan M.</creatorcontrib><description><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3041570</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Block codes ; Capacity planning ; Capacity-achieving codes ; Codes ; Complexity ; Complexity theory ; Decoding ; Error correction ; Error probability ; Kernel ; low-complexity codes ; Memoryless systems ; Polar codes ; random codes</subject><ispartof>IEEE transactions on information theory, 2021-03, Vol.67 (3), p.1478-1508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</citedby><cites>FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</cites><orcidid>0000-0002-2436-3944 ; 0000-0003-2574-1510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9274521$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Wang, Hsin-Po</creatorcontrib><creatorcontrib>Duursma, Iwan M.</creatorcontrib><title>Polar Codes' Simplicity, Random Codes' Durability</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></description><subject>Block codes</subject><subject>Capacity planning</subject><subject>Capacity-achieving codes</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Error probability</subject><subject>Kernel</subject><subject>low-complexity codes</subject><subject>Memoryless systems</subject><subject>Polar codes</subject><subject>random codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvBgxe3zkySJnuU-lUoKFrPIdnNwpZtd022h_73pmz1NAzvvRnej7FrhCki5A-rxWpKQDDlIFAqOGEjlFJl-UyKUzYCQJ3lQuhzdhHjOq1CIo0YfrSNDZN5W_p4N_mqN11TF3W_v5982m3Zbv6Up12wrm6ScsnOKttEf3WcY_b98ryav2XL99fF_HGZFZzzPtNYapcrjVpKqkCRnvHSgtdCOrSlLFWhOVkuK-FAWlE5dEgFETlSlSv4mN0Od7vQ_ux87M263YVtemlI5KABUoHkgsFVhDbG4CvThXpjw94gmAMYk8CYAxhzBJMiN0Ok9t7_23NSQhLyX8GoXBs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wang, Hsin-Po</creator><creator>Duursma, Iwan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2436-3944</orcidid><orcidid>https://orcid.org/0000-0003-2574-1510</orcidid></search><sort><creationdate>20210301</creationdate><title>Polar Codes' Simplicity, Random Codes' Durability</title><author>Wang, Hsin-Po ; Duursma, Iwan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81d8b97818552f072863da0e845b1ad5d7c832a35f4b05a4fb1b12c222b27fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Block codes</topic><topic>Capacity planning</topic><topic>Capacity-achieving codes</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Error probability</topic><topic>Kernel</topic><topic>low-complexity codes</topic><topic>Memoryless systems</topic><topic>Polar codes</topic><topic>random codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hsin-Po</creatorcontrib><creatorcontrib>Duursma, Iwan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hsin-Po</au><au>Duursma, Iwan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Codes' Simplicity, Random Codes' Durability</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>67</volume><issue>3</issue><spage>1478</spage><epage>1508</epage><pages>1478-1508</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Over any discrete memoryless channel, we offer error correction codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants <inline-formula> <tex-math notation="LaTeX">\pi,\rho >0 </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">\pi +2\rho < 1 </tex-math></inline-formula>, we construct a sequence of block codes with block length <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> approaching infinity, block error probability <inline-formula> <tex-math notation="LaTeX">\exp (-{N}^\pi) </tex-math></inline-formula>, code rate <inline-formula> <tex-math notation="LaTeX">{N}^{-\rho } </tex-math></inline-formula> less than the Shannon capacity, and encoding and decoding complexity <inline-formula> <tex-math notation="LaTeX">{O}({N}\log {N}) </tex-math></inline-formula> per code block. The core theme is to incorporate polar coding (which limits the complexity to polar's realm) with large, random, dynamic kernels (which boosts the performance to random's realm). The putative codes are optimal in the following manner: Should <inline-formula> <tex-math notation="LaTeX">\pi +2\rho >1 </tex-math></inline-formula>, no such codes exist over generic channels regardless of complexity.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3041570</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2436-3944</orcidid><orcidid>https://orcid.org/0000-0003-2574-1510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-03, Vol.67 (3), p.1478-1508 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2020_3041570 |
source | IEEE Electronic Library (IEL) |
subjects | Block codes Capacity planning Capacity-achieving codes Codes Complexity Complexity theory Decoding Error correction Error probability Kernel low-complexity codes Memoryless systems Polar codes random codes |
title | Polar Codes' Simplicity, Random Codes' Durability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Codes'%20Simplicity,%20Random%20Codes'%20Durability&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wang,%20Hsin-Po&rft.date=2021-03-01&rft.volume=67&rft.issue=3&rft.spage=1478&rft.epage=1508&rft.pages=1478-1508&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3041570&rft_dat=%3Cproquest_cross%3E2490800512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490800512&rft_id=info:pmid/&rft_ieee_id=9274521&rfr_iscdi=true |