Multireference Alignment Is Easier With an Aperiodic Translation Distribution
In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the num...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-06, Vol.65 (6), p.3565-3584 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3584 |
---|---|
container_issue | 6 |
container_start_page | 3565 |
container_title | IEEE transactions on information theory |
container_volume | 65 |
creator | Abbe, Emmanuel Bendory, Tamir Leeb, William Pereira, Joao M. Sharon, Nir Singer, Amit |
description | In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as \omega (1/ \mathrm {SNR}^{3}) . In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the \chi ^{2} divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as \omega (1/ \mathrm {SNR}^{2}) . This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model. |
doi_str_mv | 10.1109/TIT.2018.2889674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2889674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590822</ieee_id><sourcerecordid>2227584692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</originalsourceid><addsrcrecordid>eNo9UD1PwzAUtBBIlMKOxGKJOcGfiTNWpUClVgxEYrSc5AVcpU6xnYF_j6tWTE-nd_fu3SF0T0lOKame6nWdM0JVzpSqilJcoBmVssyqQopLNCNplVVCqGt0E8IuQSEpm6Htdhqi9dCDB9cCXgz2y-3BRbwOeGWCBY8_bfzGxuHFAbwdO9vi2hsXBhPt6PCzDdHbZjqCW3TVmyHA3XnO0cfLql6-ZZv31_VysclaznnMmmRHeNX3siiVVES2Clh6vmVNB4p2ohXMAFNUEMoNoTQlKVTDyl7xrudz9Hi6evDjzwQh6t04eZcMNWOslEoUFUsscmK1fgwhJdQHb_fG_2pK9LEynSrTx8r0ubIkeThJLAD805WsiGKM_wEvP2cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227584692</pqid></control><display><type>article</type><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</creator><creatorcontrib>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</creatorcontrib><description><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2889674</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Complexity ; Complexity theory ; Computational geometry ; Convexity ; Covariance ; cryo–EM ; Discrete Fourier transforms ; Divergence ; Estimation ; expectation-maximization ; method of moments ; Multireference alignment ; Noise measurement ; non-convex optimization ; Optimization ; Random noise ; Signal to noise ratio ; spectral algorithm ; spiked covariance model ; Synchronization ; Translations</subject><ispartof>IEEE transactions on information theory, 2019-06, Vol.65 (6), p.3565-3584</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</citedby><cites>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</cites><orcidid>0000-0003-3773-7623 ; 0000-0003-2373-9388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8590822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Leeb, William</creatorcontrib><creatorcontrib>Pereira, Joao M.</creatorcontrib><creatorcontrib>Sharon, Nir</creatorcontrib><creatorcontrib>Singer, Amit</creatorcontrib><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></description><subject>Algorithms</subject><subject>Alignment</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Covariance</subject><subject>cryo–EM</subject><subject>Discrete Fourier transforms</subject><subject>Divergence</subject><subject>Estimation</subject><subject>expectation-maximization</subject><subject>method of moments</subject><subject>Multireference alignment</subject><subject>Noise measurement</subject><subject>non-convex optimization</subject><subject>Optimization</subject><subject>Random noise</subject><subject>Signal to noise ratio</subject><subject>spectral algorithm</subject><subject>spiked covariance model</subject><subject>Synchronization</subject><subject>Translations</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UD1PwzAUtBBIlMKOxGKJOcGfiTNWpUClVgxEYrSc5AVcpU6xnYF_j6tWTE-nd_fu3SF0T0lOKame6nWdM0JVzpSqilJcoBmVssyqQopLNCNplVVCqGt0E8IuQSEpm6Htdhqi9dCDB9cCXgz2y-3BRbwOeGWCBY8_bfzGxuHFAbwdO9vi2hsXBhPt6PCzDdHbZjqCW3TVmyHA3XnO0cfLql6-ZZv31_VysclaznnMmmRHeNX3siiVVES2Clh6vmVNB4p2ohXMAFNUEMoNoTQlKVTDyl7xrudz9Hi6evDjzwQh6t04eZcMNWOslEoUFUsscmK1fgwhJdQHb_fG_2pK9LEynSrTx8r0ubIkeThJLAD805WsiGKM_wEvP2cn</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Abbe, Emmanuel</creator><creator>Bendory, Tamir</creator><creator>Leeb, William</creator><creator>Pereira, Joao M.</creator><creator>Sharon, Nir</creator><creator>Singer, Amit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3773-7623</orcidid><orcidid>https://orcid.org/0000-0003-2373-9388</orcidid></search><sort><creationdate>20190601</creationdate><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><author>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Covariance</topic><topic>cryo–EM</topic><topic>Discrete Fourier transforms</topic><topic>Divergence</topic><topic>Estimation</topic><topic>expectation-maximization</topic><topic>method of moments</topic><topic>Multireference alignment</topic><topic>Noise measurement</topic><topic>non-convex optimization</topic><topic>Optimization</topic><topic>Random noise</topic><topic>Signal to noise ratio</topic><topic>spectral algorithm</topic><topic>spiked covariance model</topic><topic>Synchronization</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Leeb, William</creatorcontrib><creatorcontrib>Pereira, Joao M.</creatorcontrib><creatorcontrib>Sharon, Nir</creatorcontrib><creatorcontrib>Singer, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbe, Emmanuel</au><au>Bendory, Tamir</au><au>Leeb, William</au><au>Pereira, Joao M.</au><au>Sharon, Nir</au><au>Singer, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>65</volume><issue>6</issue><spage>3565</spage><epage>3584</epage><pages>3565-3584</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2889674</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3773-7623</orcidid><orcidid>https://orcid.org/0000-0003-2373-9388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2019-06, Vol.65 (6), p.3565-3584 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2018_2889674 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alignment Complexity Complexity theory Computational geometry Convexity Covariance cryo–EM Discrete Fourier transforms Divergence Estimation expectation-maximization method of moments Multireference alignment Noise measurement non-convex optimization Optimization Random noise Signal to noise ratio spectral algorithm spiked covariance model Synchronization Translations |
title | Multireference Alignment Is Easier With an Aperiodic Translation Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multireference%20Alignment%20Is%20Easier%20With%20an%20Aperiodic%20Translation%20Distribution&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abbe,%20Emmanuel&rft.date=2019-06-01&rft.volume=65&rft.issue=6&rft.spage=3565&rft.epage=3584&rft.pages=3565-3584&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2889674&rft_dat=%3Cproquest_RIE%3E2227584692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227584692&rft_id=info:pmid/&rft_ieee_id=8590822&rfr_iscdi=true |