Multireference Alignment Is Easier With an Aperiodic Translation Distribution

In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-06, Vol.65 (6), p.3565-3584
Hauptverfasser: Abbe, Emmanuel, Bendory, Tamir, Leeb, William, Pereira, Joao M., Sharon, Nir, Singer, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3584
container_issue 6
container_start_page 3565
container_title IEEE transactions on information theory
container_volume 65
creator Abbe, Emmanuel
Bendory, Tamir
Leeb, William
Pereira, Joao M.
Sharon, Nir
Singer, Amit
description In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as \omega (1/ \mathrm {SNR}^{3}) . In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the \chi ^{2} divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as \omega (1/ \mathrm {SNR}^{2}) . This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.
doi_str_mv 10.1109/TIT.2018.2889674
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2889674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590822</ieee_id><sourcerecordid>2227584692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</originalsourceid><addsrcrecordid>eNo9UD1PwzAUtBBIlMKOxGKJOcGfiTNWpUClVgxEYrSc5AVcpU6xnYF_j6tWTE-nd_fu3SF0T0lOKame6nWdM0JVzpSqilJcoBmVssyqQopLNCNplVVCqGt0E8IuQSEpm6Htdhqi9dCDB9cCXgz2y-3BRbwOeGWCBY8_bfzGxuHFAbwdO9vi2hsXBhPt6PCzDdHbZjqCW3TVmyHA3XnO0cfLql6-ZZv31_VysclaznnMmmRHeNX3siiVVES2Clh6vmVNB4p2ohXMAFNUEMoNoTQlKVTDyl7xrudz9Hi6evDjzwQh6t04eZcMNWOslEoUFUsscmK1fgwhJdQHb_fG_2pK9LEynSrTx8r0ubIkeThJLAD805WsiGKM_wEvP2cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227584692</pqid></control><display><type>article</type><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</creator><creatorcontrib>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</creatorcontrib><description><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2889674</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Complexity ; Complexity theory ; Computational geometry ; Convexity ; Covariance ; cryo–EM ; Discrete Fourier transforms ; Divergence ; Estimation ; expectation-maximization ; method of moments ; Multireference alignment ; Noise measurement ; non-convex optimization ; Optimization ; Random noise ; Signal to noise ratio ; spectral algorithm ; spiked covariance model ; Synchronization ; Translations</subject><ispartof>IEEE transactions on information theory, 2019-06, Vol.65 (6), p.3565-3584</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</citedby><cites>FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</cites><orcidid>0000-0003-3773-7623 ; 0000-0003-2373-9388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8590822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Leeb, William</creatorcontrib><creatorcontrib>Pereira, Joao M.</creatorcontrib><creatorcontrib>Sharon, Nir</creatorcontrib><creatorcontrib>Singer, Amit</creatorcontrib><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></description><subject>Algorithms</subject><subject>Alignment</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Covariance</subject><subject>cryo–EM</subject><subject>Discrete Fourier transforms</subject><subject>Divergence</subject><subject>Estimation</subject><subject>expectation-maximization</subject><subject>method of moments</subject><subject>Multireference alignment</subject><subject>Noise measurement</subject><subject>non-convex optimization</subject><subject>Optimization</subject><subject>Random noise</subject><subject>Signal to noise ratio</subject><subject>spectral algorithm</subject><subject>spiked covariance model</subject><subject>Synchronization</subject><subject>Translations</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UD1PwzAUtBBIlMKOxGKJOcGfiTNWpUClVgxEYrSc5AVcpU6xnYF_j6tWTE-nd_fu3SF0T0lOKame6nWdM0JVzpSqilJcoBmVssyqQopLNCNplVVCqGt0E8IuQSEpm6Htdhqi9dCDB9cCXgz2y-3BRbwOeGWCBY8_bfzGxuHFAbwdO9vi2hsXBhPt6PCzDdHbZjqCW3TVmyHA3XnO0cfLql6-ZZv31_VysclaznnMmmRHeNX3siiVVES2Clh6vmVNB4p2ohXMAFNUEMoNoTQlKVTDyl7xrudz9Hi6evDjzwQh6t04eZcMNWOslEoUFUsscmK1fgwhJdQHb_fG_2pK9LEynSrTx8r0ubIkeThJLAD805WsiGKM_wEvP2cn</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Abbe, Emmanuel</creator><creator>Bendory, Tamir</creator><creator>Leeb, William</creator><creator>Pereira, Joao M.</creator><creator>Sharon, Nir</creator><creator>Singer, Amit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3773-7623</orcidid><orcidid>https://orcid.org/0000-0003-2373-9388</orcidid></search><sort><creationdate>20190601</creationdate><title>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</title><author>Abbe, Emmanuel ; Bendory, Tamir ; Leeb, William ; Pereira, Joao M. ; Sharon, Nir ; Singer, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-befe039ff56785805c8e2201c2bde81d4c42ae2814013a01115568b27f83df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Covariance</topic><topic>cryo–EM</topic><topic>Discrete Fourier transforms</topic><topic>Divergence</topic><topic>Estimation</topic><topic>expectation-maximization</topic><topic>method of moments</topic><topic>Multireference alignment</topic><topic>Noise measurement</topic><topic>non-convex optimization</topic><topic>Optimization</topic><topic>Random noise</topic><topic>Signal to noise ratio</topic><topic>spectral algorithm</topic><topic>spiked covariance model</topic><topic>Synchronization</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Leeb, William</creatorcontrib><creatorcontrib>Pereira, Joao M.</creatorcontrib><creatorcontrib>Sharon, Nir</creatorcontrib><creatorcontrib>Singer, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbe, Emmanuel</au><au>Bendory, Tamir</au><au>Leeb, William</au><au>Pereira, Joao M.</au><au>Sharon, Nir</au><au>Singer, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multireference Alignment Is Easier With an Aperiodic Translation Distribution</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>65</volume><issue>6</issue><spage>3565</spage><epage>3584</epage><pages>3565-3584</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{3}) </tex-math></inline-formula>. In this paper, using a generalization of the Chapman-Robbins bound for orbits and expansions of the <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula> <tex-math notation="LaTeX">\omega (1/ \mathrm {SNR}^{2}) </tex-math></inline-formula>. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2889674</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3773-7623</orcidid><orcidid>https://orcid.org/0000-0003-2373-9388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2019-06, Vol.65 (6), p.3565-3584
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2018_2889674
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Complexity
Complexity theory
Computational geometry
Convexity
Covariance
cryo–EM
Discrete Fourier transforms
Divergence
Estimation
expectation-maximization
method of moments
Multireference alignment
Noise measurement
non-convex optimization
Optimization
Random noise
Signal to noise ratio
spectral algorithm
spiked covariance model
Synchronization
Translations
title Multireference Alignment Is Easier With an Aperiodic Translation Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multireference%20Alignment%20Is%20Easier%20With%20an%20Aperiodic%20Translation%20Distribution&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abbe,%20Emmanuel&rft.date=2019-06-01&rft.volume=65&rft.issue=6&rft.spage=3565&rft.epage=3584&rft.pages=3565-3584&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2889674&rft_dat=%3Cproquest_RIE%3E2227584692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227584692&rft_id=info:pmid/&rft_ieee_id=8590822&rfr_iscdi=true