Intrinsic Capacity

Every channel can be expressed as a convex combination of deterministic channels with each deterministic channel corresponding to one particular intrinsic state. Such convex combinations are, in general, not unique, each giving rise to a specific intrinsic-state distribution. In this paper, we study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-03, Vol.65 (3), p.1345-1360
Hauptverfasser: Yang, Shengtian, Xu, Rui, Chen, Jun, Zhang, Jian-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Every channel can be expressed as a convex combination of deterministic channels with each deterministic channel corresponding to one particular intrinsic state. Such convex combinations are, in general, not unique, each giving rise to a specific intrinsic-state distribution. In this paper, we study the maximum and minimum capacities of a channel when the realization of its intrinsic state is causally available at the encoder and/or the decoder. Several conclusive results are obtained for binary-input channels and binary-output channels. By-products of our investigation include a generalization of the Birkhoff-von Neumann theorem and a condition on the uselessness of causal state information at the encoder.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2018.2885324