Intrinsic Capacity
Every channel can be expressed as a convex combination of deterministic channels with each deterministic channel corresponding to one particular intrinsic state. Such convex combinations are, in general, not unique, each giving rise to a specific intrinsic-state distribution. In this paper, we study...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-03, Vol.65 (3), p.1345-1360 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Every channel can be expressed as a convex combination of deterministic channels with each deterministic channel corresponding to one particular intrinsic state. Such convex combinations are, in general, not unique, each giving rise to a specific intrinsic-state distribution. In this paper, we study the maximum and minimum capacities of a channel when the realization of its intrinsic state is causally available at the encoder and/or the decoder. Several conclusive results are obtained for binary-input channels and binary-output channels. By-products of our investigation include a generalization of the Birkhoff-von Neumann theorem and a condition on the uselessness of causal state information at the encoder. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2018.2885324 |