Making Recommendations Bandwidth Aware
This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2018-11, Vol.64 (11), p.7031-7050 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7050 |
---|---|
container_issue | 11 |
container_start_page | 7031 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Song, Linqi Fragouli, Christina |
description | This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms. |
doi_str_mv | 10.1109/TIT.2018.2853548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2853548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8404065</ieee_id><sourcerecordid>2123972748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUtB8Lbr5HOTYy1-FCqC7D1k04lutbs12VL896a0eBqGed554SHkmkJJKZj7el6XDKgumZZcCn1CRlTKqjBKilMygnwqjBD6nFyktMqrkJSNyN2r-2q7j8k7-n69xm7phrbv0uTBdctduxw-J9Odi3hJzoL7Tnh1nGNSPz3Ws5di8fY8n00XheecDwVKFZTSDkAZbhhzAaVrvFcV1wwqCOAQ0XFmqPFYqQaD44F675n2Dedjcnt4u4n9zxbTYFf9Nna50TLKuKlYJXSm4ED52KcUMdhNbNcu_loKdi_DZhl2L8MeZeTIzSHS5v5_XAsQoCT_Az6aWd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123972748</pqid></control><display><type>article</type><title>Making Recommendations Bandwidth Aware</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Linqi ; Fragouli, Christina</creator><creatorcontrib>Song, Linqi ; Fragouli, Christina</creatorcontrib><description>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2853548</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Bandwidth ; bandwidth constraints ; Bandwidths ; Coding ; Decoding ; Encoding ; index coding ; Indexes ; Pliable index coding ; recommendation systems ; Recommender systems ; Servers ; User satisfaction ; Wireless networks</subject><ispartof>IEEE transactions on information theory, 2018-11, Vol.64 (11), p.7031-7050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</citedby><cites>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</cites><orcidid>0000-0003-2756-4984 ; 0000-0003-1002-5829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8404065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8404065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><title>Making Recommendations Bandwidth Aware</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</description><subject>Approximation algorithms</subject><subject>Bandwidth</subject><subject>bandwidth constraints</subject><subject>Bandwidths</subject><subject>Coding</subject><subject>Decoding</subject><subject>Encoding</subject><subject>index coding</subject><subject>Indexes</subject><subject>Pliable index coding</subject><subject>recommendation systems</subject><subject>Recommender systems</subject><subject>Servers</subject><subject>User satisfaction</subject><subject>Wireless networks</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUtB8Lbr5HOTYy1-FCqC7D1k04lutbs12VL896a0eBqGed554SHkmkJJKZj7el6XDKgumZZcCn1CRlTKqjBKilMygnwqjBD6nFyktMqrkJSNyN2r-2q7j8k7-n69xm7phrbv0uTBdctduxw-J9Odi3hJzoL7Tnh1nGNSPz3Ws5di8fY8n00XheecDwVKFZTSDkAZbhhzAaVrvFcV1wwqCOAQ0XFmqPFYqQaD44F675n2Dedjcnt4u4n9zxbTYFf9Nna50TLKuKlYJXSm4ED52KcUMdhNbNcu_loKdi_DZhl2L8MeZeTIzSHS5v5_XAsQoCT_Az6aWd4</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Song, Linqi</creator><creator>Fragouli, Christina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid></search><sort><creationdate>20181101</creationdate><title>Making Recommendations Bandwidth Aware</title><author>Song, Linqi ; Fragouli, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation algorithms</topic><topic>Bandwidth</topic><topic>bandwidth constraints</topic><topic>Bandwidths</topic><topic>Coding</topic><topic>Decoding</topic><topic>Encoding</topic><topic>index coding</topic><topic>Indexes</topic><topic>Pliable index coding</topic><topic>recommendation systems</topic><topic>Recommender systems</topic><topic>Servers</topic><topic>User satisfaction</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Linqi</au><au>Fragouli, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Recommendations Bandwidth Aware</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>64</volume><issue>11</issue><spage>7031</spage><epage>7050</epage><pages>7031-7050</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2853548</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-11, Vol.64 (11), p.7031-7050 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2018_2853548 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation algorithms Bandwidth bandwidth constraints Bandwidths Coding Decoding Encoding index coding Indexes Pliable index coding recommendation systems Recommender systems Servers User satisfaction Wireless networks |
title | Making Recommendations Bandwidth Aware |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Recommendations%20Bandwidth%20Aware&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Song,%20Linqi&rft.date=2018-11-01&rft.volume=64&rft.issue=11&rft.spage=7031&rft.epage=7050&rft.pages=7031-7050&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2853548&rft_dat=%3Cproquest_RIE%3E2123972748%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123972748&rft_id=info:pmid/&rft_ieee_id=8404065&rfr_iscdi=true |