Making Recommendations Bandwidth Aware

This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2018-11, Vol.64 (11), p.7031-7050
Hauptverfasser: Song, Linqi, Fragouli, Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7050
container_issue 11
container_start_page 7031
container_title IEEE transactions on information theory
container_volume 64
creator Song, Linqi
Fragouli, Christina
description This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.
doi_str_mv 10.1109/TIT.2018.2853548
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2853548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8404065</ieee_id><sourcerecordid>2123972748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUtB8Lbr5HOTYy1-FCqC7D1k04lutbs12VL896a0eBqGed554SHkmkJJKZj7el6XDKgumZZcCn1CRlTKqjBKilMygnwqjBD6nFyktMqrkJSNyN2r-2q7j8k7-n69xm7phrbv0uTBdctduxw-J9Odi3hJzoL7Tnh1nGNSPz3Ws5di8fY8n00XheecDwVKFZTSDkAZbhhzAaVrvFcV1wwqCOAQ0XFmqPFYqQaD44F675n2Dedjcnt4u4n9zxbTYFf9Nna50TLKuKlYJXSm4ED52KcUMdhNbNcu_loKdi_DZhl2L8MeZeTIzSHS5v5_XAsQoCT_Az6aWd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123972748</pqid></control><display><type>article</type><title>Making Recommendations Bandwidth Aware</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Linqi ; Fragouli, Christina</creator><creatorcontrib>Song, Linqi ; Fragouli, Christina</creatorcontrib><description>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2853548</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Bandwidth ; bandwidth constraints ; Bandwidths ; Coding ; Decoding ; Encoding ; index coding ; Indexes ; Pliable index coding ; recommendation systems ; Recommender systems ; Servers ; User satisfaction ; Wireless networks</subject><ispartof>IEEE transactions on information theory, 2018-11, Vol.64 (11), p.7031-7050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</citedby><cites>FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</cites><orcidid>0000-0003-2756-4984 ; 0000-0003-1002-5829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8404065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8404065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><title>Making Recommendations Bandwidth Aware</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</description><subject>Approximation algorithms</subject><subject>Bandwidth</subject><subject>bandwidth constraints</subject><subject>Bandwidths</subject><subject>Coding</subject><subject>Decoding</subject><subject>Encoding</subject><subject>index coding</subject><subject>Indexes</subject><subject>Pliable index coding</subject><subject>recommendation systems</subject><subject>Recommender systems</subject><subject>Servers</subject><subject>User satisfaction</subject><subject>Wireless networks</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUtB8Lbr5HOTYy1-FCqC7D1k04lutbs12VL896a0eBqGed554SHkmkJJKZj7el6XDKgumZZcCn1CRlTKqjBKilMygnwqjBD6nFyktMqrkJSNyN2r-2q7j8k7-n69xm7phrbv0uTBdctduxw-J9Odi3hJzoL7Tnh1nGNSPz3Ws5di8fY8n00XheecDwVKFZTSDkAZbhhzAaVrvFcV1wwqCOAQ0XFmqPFYqQaD44F675n2Dedjcnt4u4n9zxbTYFf9Nna50TLKuKlYJXSm4ED52KcUMdhNbNcu_loKdi_DZhl2L8MeZeTIzSHS5v5_XAsQoCT_Az6aWd4</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Song, Linqi</creator><creator>Fragouli, Christina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid></search><sort><creationdate>20181101</creationdate><title>Making Recommendations Bandwidth Aware</title><author>Song, Linqi ; Fragouli, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e56f668a00693922afe5abcc67382070f0aeeea32919ce76befa3f1ccc28cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation algorithms</topic><topic>Bandwidth</topic><topic>bandwidth constraints</topic><topic>Bandwidths</topic><topic>Coding</topic><topic>Decoding</topic><topic>Encoding</topic><topic>index coding</topic><topic>Indexes</topic><topic>Pliable index coding</topic><topic>recommendation systems</topic><topic>Recommender systems</topic><topic>Servers</topic><topic>User satisfaction</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Linqi</au><au>Fragouli, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Recommendations Bandwidth Aware</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>64</volume><issue>11</issue><spage>7031</spage><epage>7050</epage><pages>7031-7050</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommendation systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2853548</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2018-11, Vol.64 (11), p.7031-7050
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2018_2853548
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Bandwidth
bandwidth constraints
Bandwidths
Coding
Decoding
Encoding
index coding
Indexes
Pliable index coding
recommendation systems
Recommender systems
Servers
User satisfaction
Wireless networks
title Making Recommendations Bandwidth Aware
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Recommendations%20Bandwidth%20Aware&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Song,%20Linqi&rft.date=2018-11-01&rft.volume=64&rft.issue=11&rft.spage=7031&rft.epage=7050&rft.pages=7031-7050&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2853548&rft_dat=%3Cproquest_RIE%3E2123972748%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123972748&rft_id=info:pmid/&rft_ieee_id=8404065&rfr_iscdi=true