On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements

We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to b bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2018-06, Vol.64 (6), p.4159-4178
Hauptverfasser: Slawski, Martin, Li, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4178
container_issue 6
container_start_page 4159
container_title IEEE transactions on information theory
container_volume 64
creator Slawski, Martin
Li, Ping
description We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to b bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements m and the bit depth per measurement b given a total budget of B = m \cdot b bits when the goal is to minimize the expected \ell _{2} -error in estimating the signal. It turns out that the choice b = 1 is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice b = 2 is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to \ell _{2} -estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.
doi_str_mv 10.1109/TIT.2018.2826459
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2826459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8344517</ieee_id><sourcerecordid>10_1109_TIT_2018_2826459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwR2IzP5BiJ7YbL1ugUKlQQcs6cpwxDWoesh1Q-Q_-l1StWI1G9567OIRcMzpijKrb9Xw9iilLR3EaSy7UCRkwIcaRkoKfkgHto0hxnp6TC-8_-5cLFg_I77KGsEFYO11gtLQWphi-EWuYlgHusQ0b0HUBL12Vo4PGwkpX7RY92MaBhqn2pYFJ27pGmw2EBlbBdSZ0DgtYlR-13sIbmuYL3Q5mrqkgh2g__drpOpQ_fWtR1qgdPKP2PVVhHfwlObN66_HqeIfkffawvnuKFsvH-d1kEZlYJiGyTDBZSCuF4dIaFAILwwsjeSxNn-lUFWosc1mYhFJOFdUq1YnKc2GtiTEZEnrYNa7x3qHNWldW2u0yRrO91qzXmu21ZketPXJzQEpE_K-nCe99jpM_gRl1JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Slawski, Martin ; Li, Ping</creator><creatorcontrib>Slawski, Martin ; Li, Ping</creatorcontrib><description><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2826459</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additives ; Compressed sensing ; Gaussian noise ; Gaussian width ; low-complexity signals ; Noise level ; Noise measurement ; quantization ; Quantization (signal) ; Signal to noise ratio</subject><ispartof>IEEE transactions on information theory, 2018-06, Vol.64 (6), p.4159-4178</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</citedby><cites>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</cites><orcidid>0000-0002-5979-8868 ; 0000-0003-0054-4764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8344517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8344517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Slawski, Martin</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></description><subject>Additives</subject><subject>Compressed sensing</subject><subject>Gaussian noise</subject><subject>Gaussian width</subject><subject>low-complexity signals</subject><subject>Noise level</subject><subject>Noise measurement</subject><subject>quantization</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqWwR2IzP5BiJ7YbL1ugUKlQQcs6cpwxDWoesh1Q-Q_-l1StWI1G9567OIRcMzpijKrb9Xw9iilLR3EaSy7UCRkwIcaRkoKfkgHto0hxnp6TC-8_-5cLFg_I77KGsEFYO11gtLQWphi-EWuYlgHusQ0b0HUBL12Vo4PGwkpX7RY92MaBhqn2pYFJ27pGmw2EBlbBdSZ0DgtYlR-13sIbmuYL3Q5mrqkgh2g__drpOpQ_fWtR1qgdPKP2PVVhHfwlObN66_HqeIfkffawvnuKFsvH-d1kEZlYJiGyTDBZSCuF4dIaFAILwwsjeSxNn-lUFWosc1mYhFJOFdUq1YnKc2GtiTEZEnrYNa7x3qHNWldW2u0yRrO91qzXmu21ZketPXJzQEpE_K-nCe99jpM_gRl1JA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Slawski, Martin</creator><creator>Li, Ping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5979-8868</orcidid><orcidid>https://orcid.org/0000-0003-0054-4764</orcidid></search><sort><creationdate>201806</creationdate><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><author>Slawski, Martin ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Compressed sensing</topic><topic>Gaussian noise</topic><topic>Gaussian width</topic><topic>low-complexity signals</topic><topic>Noise level</topic><topic>Noise measurement</topic><topic>quantization</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slawski, Martin</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Slawski, Martin</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-06</date><risdate>2018</risdate><volume>64</volume><issue>6</issue><spage>4159</spage><epage>4178</epage><pages>4159-4178</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></abstract><pub>IEEE</pub><doi>10.1109/TIT.2018.2826459</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5979-8868</orcidid><orcidid>https://orcid.org/0000-0003-0054-4764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2018-06, Vol.64 (6), p.4159-4178
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2018_2826459
source IEEE Electronic Library (IEL)
subjects Additives
Compressed sensing
Gaussian noise
Gaussian width
low-complexity signals
Noise level
Noise measurement
quantization
Quantization (signal)
Signal to noise ratio
title On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Trade-Off%20Between%20Bit%20Depth%20and%20Number%20of%20Samples%20for%20a%20Basic%20Approach%20to%20Structured%20Signal%20Recovery%20From%20b%20-Bit%20Quantized%20Linear%20Measurements&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Slawski,%20Martin&rft.date=2018-06&rft.volume=64&rft.issue=6&rft.spage=4159&rft.epage=4178&rft.pages=4159-4178&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2826459&rft_dat=%3Ccrossref_RIE%3E10_1109_TIT_2018_2826459%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8344517&rfr_iscdi=true