On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements
We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to b bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantiz...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2018-06, Vol.64 (6), p.4159-4178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4178 |
---|---|
container_issue | 6 |
container_start_page | 4159 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Slawski, Martin Li, Ping |
description | We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to b bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements m and the bit depth per measurement b given a total budget of B = m \cdot b bits when the goal is to minimize the expected \ell _{2} -error in estimating the signal. It turns out that the choice b = 1 is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice b = 2 is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to \ell _{2} -estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings. |
doi_str_mv | 10.1109/TIT.2018.2826459 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2018_2826459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8344517</ieee_id><sourcerecordid>10_1109_TIT_2018_2826459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwR2IzP5BiJ7YbL1ugUKlQQcs6cpwxDWoesh1Q-Q_-l1StWI1G9567OIRcMzpijKrb9Xw9iilLR3EaSy7UCRkwIcaRkoKfkgHto0hxnp6TC-8_-5cLFg_I77KGsEFYO11gtLQWphi-EWuYlgHusQ0b0HUBL12Vo4PGwkpX7RY92MaBhqn2pYFJ27pGmw2EBlbBdSZ0DgtYlR-13sIbmuYL3Q5mrqkgh2g__drpOpQ_fWtR1qgdPKP2PVVhHfwlObN66_HqeIfkffawvnuKFsvH-d1kEZlYJiGyTDBZSCuF4dIaFAILwwsjeSxNn-lUFWosc1mYhFJOFdUq1YnKc2GtiTEZEnrYNa7x3qHNWldW2u0yRrO91qzXmu21ZketPXJzQEpE_K-nCe99jpM_gRl1JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Slawski, Martin ; Li, Ping</creator><creatorcontrib>Slawski, Martin ; Li, Ping</creatorcontrib><description><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2826459</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additives ; Compressed sensing ; Gaussian noise ; Gaussian width ; low-complexity signals ; Noise level ; Noise measurement ; quantization ; Quantization (signal) ; Signal to noise ratio</subject><ispartof>IEEE transactions on information theory, 2018-06, Vol.64 (6), p.4159-4178</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</citedby><cites>FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</cites><orcidid>0000-0002-5979-8868 ; 0000-0003-0054-4764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8344517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8344517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Slawski, Martin</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></description><subject>Additives</subject><subject>Compressed sensing</subject><subject>Gaussian noise</subject><subject>Gaussian width</subject><subject>low-complexity signals</subject><subject>Noise level</subject><subject>Noise measurement</subject><subject>quantization</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqWwR2IzP5BiJ7YbL1ugUKlQQcs6cpwxDWoesh1Q-Q_-l1StWI1G9567OIRcMzpijKrb9Xw9iilLR3EaSy7UCRkwIcaRkoKfkgHto0hxnp6TC-8_-5cLFg_I77KGsEFYO11gtLQWphi-EWuYlgHusQ0b0HUBL12Vo4PGwkpX7RY92MaBhqn2pYFJ27pGmw2EBlbBdSZ0DgtYlR-13sIbmuYL3Q5mrqkgh2g__drpOpQ_fWtR1qgdPKP2PVVhHfwlObN66_HqeIfkffawvnuKFsvH-d1kEZlYJiGyTDBZSCuF4dIaFAILwwsjeSxNn-lUFWosc1mYhFJOFdUq1YnKc2GtiTEZEnrYNa7x3qHNWldW2u0yRrO91qzXmu21ZketPXJzQEpE_K-nCe99jpM_gRl1JA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Slawski, Martin</creator><creator>Li, Ping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5979-8868</orcidid><orcidid>https://orcid.org/0000-0003-0054-4764</orcidid></search><sort><creationdate>201806</creationdate><title>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</title><author>Slawski, Martin ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f1516d6f65c46fce55edc4dc6426c151a89d976b6dc3004090a98a39bb5ffc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Compressed sensing</topic><topic>Gaussian noise</topic><topic>Gaussian width</topic><topic>low-complexity signals</topic><topic>Noise level</topic><topic>Noise measurement</topic><topic>quantization</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slawski, Martin</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Slawski, Martin</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-06</date><risdate>2018</risdate><volume>64</volume><issue>6</issue><spage>4159</spage><epage>4178</epage><pages>4159-4178</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of recovering a high-dimensional structured signal from independent Gaussian linear measurements each of which is quantized to <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> bits. The focus is on a specific method of signal recovery that extends a procedure originally proposed by Plan and Vershynin for one-bit quantization to a multi-bit setting. At the heart of this paper is a characterization of the optimal trade-off between the number of measurements <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and the bit depth per measurement <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> given a total budget of <inline-formula> <tex-math notation="LaTeX">B = m \cdot b </tex-math></inline-formula> bits when the goal is to minimize the expected <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-error in estimating the signal. It turns out that the choice <inline-formula> <tex-math notation="LaTeX">b = 1 </tex-math></inline-formula> is optimal for estimating the unit vector (direction) corresponding to the signal for any level of additive Gaussian noise before quantization as well as for a specific model of adversarial noise, whereas in a noiseless setting the choice <inline-formula> <tex-math notation="LaTeX">b = 2 </tex-math></inline-formula> is optimal for estimating the direction and the norm (scale) of the signal. Moreover, Lloyd-Max quantization is shown to be an optimal quantization scheme with respect to <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-estimation error. Our analysis is corroborated by the numerical experiments showing nearly perfect agreement with our theoretical predictions. This paper is complemented by an empirical comparison to alternative methods of signal recovery. The results of that comparison point to a regime change depending on the noise level: in a low-noise setting, the approach under study falls short of more sophisticated competitors while being competitive in moderate- and high-noise settings.]]></abstract><pub>IEEE</pub><doi>10.1109/TIT.2018.2826459</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5979-8868</orcidid><orcidid>https://orcid.org/0000-0003-0054-4764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-06, Vol.64 (6), p.4159-4178 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2018_2826459 |
source | IEEE Electronic Library (IEL) |
subjects | Additives Compressed sensing Gaussian noise Gaussian width low-complexity signals Noise level Noise measurement quantization Quantization (signal) Signal to noise ratio |
title | On the Trade-Off Between Bit Depth and Number of Samples for a Basic Approach to Structured Signal Recovery From b -Bit Quantized Linear Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Trade-Off%20Between%20Bit%20Depth%20and%20Number%20of%20Samples%20for%20a%20Basic%20Approach%20to%20Structured%20Signal%20Recovery%20From%20b%20-Bit%20Quantized%20Linear%20Measurements&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Slawski,%20Martin&rft.date=2018-06&rft.volume=64&rft.issue=6&rft.spage=4159&rft.epage=4178&rft.pages=4159-4178&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2826459&rft_dat=%3Ccrossref_RIE%3E10_1109_TIT_2018_2826459%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8344517&rfr_iscdi=true |