Investigations on Periodic Sequences With Maximum Nonlinear Complexity

The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-10, Vol.63 (10), p.6188-6198
Hauptverfasser: Zhimin Sun, Xiangyong Zeng, Chunlei Li, Helleseth, Tor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6198
container_issue 10
container_start_page 6188
container_title IEEE transactions on information theory
container_volume 63
creator Zhimin Sun
Xiangyong Zeng
Chunlei Li
Helleseth, Tor
description The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.
doi_str_mv 10.1109/TIT.2017.2714681
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2017_2714681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7946158</ieee_id><sourcerecordid>2174326285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562Z7GSze5RitVA_wIrHkN2d1ZR2U5OttP_elBZPw8Dzzrw8jF0DHwHw8m4-nY8EBzUSCjAv4IQNQEqVlrnEUzbgHIq0RCzO2UUIi7iiBDFgk2n3S6G3X6a3rguJ65I38tY1tk7e6WdDXU0h-bT9d_Jstna1WSUvrlvajoxPxm61XtLW9rtLdtaaZaCr4xyyj8nDfPyUzl4fp-P7WVqLEvpUgWhaU5VITY6KTIOtAc4zLCtUCLJQplYGY81GGlkIgoaqSlQIbd0o5NmQ3R7urr2L5UKvF27ju_hSC1CYiVwUMlL8QNXeheCp1WtvV8bvNHC9t6WjLb23pY-2YuTmELFE9I-rEvPYKvsDVcFmIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174326285</pqid></control><display><type>article</type><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><source>IEEE Electronic Library (IEL)</source><creator>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</creator><creatorcontrib>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</creatorcontrib><description>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2714681</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k th-order complexity ; Complexity ; Complexity theory ; Cryptography ; Electronic mail ; Games ; nonlinear complexity ; Periodic sequence ; Recursive methods ; Sequences ; Shift registers ; Sun</subject><ispartof>IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6188-6198</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</citedby><cites>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</cites><orcidid>0000-0002-8351-8766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7946158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7946158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhimin Sun</creatorcontrib><creatorcontrib>Xiangyong Zeng</creatorcontrib><creatorcontrib>Chunlei Li</creatorcontrib><creatorcontrib>Helleseth, Tor</creatorcontrib><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k th-order complexity</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Cryptography</subject><subject>Electronic mail</subject><subject>Games</subject><subject>nonlinear complexity</subject><subject>Periodic sequence</subject><subject>Recursive methods</subject><subject>Sequences</subject><subject>Shift registers</subject><subject>Sun</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562Z7GSze5RitVA_wIrHkN2d1ZR2U5OttP_elBZPw8Dzzrw8jF0DHwHw8m4-nY8EBzUSCjAv4IQNQEqVlrnEUzbgHIq0RCzO2UUIi7iiBDFgk2n3S6G3X6a3rguJ65I38tY1tk7e6WdDXU0h-bT9d_Jstna1WSUvrlvajoxPxm61XtLW9rtLdtaaZaCr4xyyj8nDfPyUzl4fp-P7WVqLEvpUgWhaU5VITY6KTIOtAc4zLCtUCLJQplYGY81GGlkIgoaqSlQIbd0o5NmQ3R7urr2L5UKvF27ju_hSC1CYiVwUMlL8QNXeheCp1WtvV8bvNHC9t6WjLb23pY-2YuTmELFE9I-rEvPYKvsDVcFmIA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Zhimin Sun</creator><creator>Xiangyong Zeng</creator><creator>Chunlei Li</creator><creator>Helleseth, Tor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8351-8766</orcidid></search><sort><creationdate>20171001</creationdate><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><author>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k th-order complexity</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Cryptography</topic><topic>Electronic mail</topic><topic>Games</topic><topic>nonlinear complexity</topic><topic>Periodic sequence</topic><topic>Recursive methods</topic><topic>Sequences</topic><topic>Shift registers</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhimin Sun</creatorcontrib><creatorcontrib>Xiangyong Zeng</creatorcontrib><creatorcontrib>Chunlei Li</creatorcontrib><creatorcontrib>Helleseth, Tor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhimin Sun</au><au>Xiangyong Zeng</au><au>Chunlei Li</au><au>Helleseth, Tor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>63</volume><issue>10</issue><spage>6188</spage><epage>6198</epage><pages>6188-6198</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2714681</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8351-8766</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6188-6198
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2017_2714681
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k th-order complexity
Complexity
Complexity theory
Cryptography
Electronic mail
Games
nonlinear complexity
Periodic sequence
Recursive methods
Sequences
Shift registers
Sun
title Investigations on Periodic Sequences With Maximum Nonlinear Complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20on%20Periodic%20Sequences%20With%20Maximum%20Nonlinear%20Complexity&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhimin%20Sun&rft.date=2017-10-01&rft.volume=63&rft.issue=10&rft.spage=6188&rft.epage=6198&rft.pages=6188-6198&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2714681&rft_dat=%3Cproquest_RIE%3E2174326285%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174326285&rft_id=info:pmid/&rft_ieee_id=7946158&rfr_iscdi=true