Investigations on Periodic Sequences With Maximum Nonlinear Complexity
The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-10, Vol.63 (10), p.6188-6198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6198 |
---|---|
container_issue | 10 |
container_start_page | 6188 |
container_title | IEEE transactions on information theory |
container_volume | 63 |
creator | Zhimin Sun Xiangyong Zeng Chunlei Li Helleseth, Tor |
description | The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined. |
doi_str_mv | 10.1109/TIT.2017.2714681 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2017_2714681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7946158</ieee_id><sourcerecordid>2174326285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562Z7GSze5RitVA_wIrHkN2d1ZR2U5OttP_elBZPw8Dzzrw8jF0DHwHw8m4-nY8EBzUSCjAv4IQNQEqVlrnEUzbgHIq0RCzO2UUIi7iiBDFgk2n3S6G3X6a3rguJ65I38tY1tk7e6WdDXU0h-bT9d_Jstna1WSUvrlvajoxPxm61XtLW9rtLdtaaZaCr4xyyj8nDfPyUzl4fp-P7WVqLEvpUgWhaU5VITY6KTIOtAc4zLCtUCLJQplYGY81GGlkIgoaqSlQIbd0o5NmQ3R7urr2L5UKvF27ju_hSC1CYiVwUMlL8QNXeheCp1WtvV8bvNHC9t6WjLb23pY-2YuTmELFE9I-rEvPYKvsDVcFmIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174326285</pqid></control><display><type>article</type><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><source>IEEE Electronic Library (IEL)</source><creator>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</creator><creatorcontrib>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</creatorcontrib><description>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2714681</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k th-order complexity ; Complexity ; Complexity theory ; Cryptography ; Electronic mail ; Games ; nonlinear complexity ; Periodic sequence ; Recursive methods ; Sequences ; Shift registers ; Sun</subject><ispartof>IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6188-6198</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</citedby><cites>FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</cites><orcidid>0000-0002-8351-8766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7946158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7946158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhimin Sun</creatorcontrib><creatorcontrib>Xiangyong Zeng</creatorcontrib><creatorcontrib>Chunlei Li</creatorcontrib><creatorcontrib>Helleseth, Tor</creatorcontrib><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k th-order complexity</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Cryptography</subject><subject>Electronic mail</subject><subject>Games</subject><subject>nonlinear complexity</subject><subject>Periodic sequence</subject><subject>Recursive methods</subject><subject>Sequences</subject><subject>Shift registers</subject><subject>Sun</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562Z7GSze5RitVA_wIrHkN2d1ZR2U5OttP_elBZPw8Dzzrw8jF0DHwHw8m4-nY8EBzUSCjAv4IQNQEqVlrnEUzbgHIq0RCzO2UUIi7iiBDFgk2n3S6G3X6a3rguJ65I38tY1tk7e6WdDXU0h-bT9d_Jstna1WSUvrlvajoxPxm61XtLW9rtLdtaaZaCr4xyyj8nDfPyUzl4fp-P7WVqLEvpUgWhaU5VITY6KTIOtAc4zLCtUCLJQplYGY81GGlkIgoaqSlQIbd0o5NmQ3R7urr2L5UKvF27ju_hSC1CYiVwUMlL8QNXeheCp1WtvV8bvNHC9t6WjLb23pY-2YuTmELFE9I-rEvPYKvsDVcFmIA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Zhimin Sun</creator><creator>Xiangyong Zeng</creator><creator>Chunlei Li</creator><creator>Helleseth, Tor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8351-8766</orcidid></search><sort><creationdate>20171001</creationdate><title>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</title><author>Zhimin Sun ; Xiangyong Zeng ; Chunlei Li ; Helleseth, Tor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-712dfab94ed647ead4fa100349b4741587ac7a4448d5a582e1debb2b41fcd7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k th-order complexity</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Cryptography</topic><topic>Electronic mail</topic><topic>Games</topic><topic>nonlinear complexity</topic><topic>Periodic sequence</topic><topic>Recursive methods</topic><topic>Sequences</topic><topic>Shift registers</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhimin Sun</creatorcontrib><creatorcontrib>Xiangyong Zeng</creatorcontrib><creatorcontrib>Chunlei Li</creatorcontrib><creatorcontrib>Helleseth, Tor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhimin Sun</au><au>Xiangyong Zeng</au><au>Chunlei Li</au><au>Helleseth, Tor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations on Periodic Sequences With Maximum Nonlinear Complexity</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>63</volume><issue>10</issue><spage>6188</spage><epage>6198</epage><pages>6188-6198</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2714681</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8351-8766</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6188-6198 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2017_2714681 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k th-order complexity Complexity Complexity theory Cryptography Electronic mail Games nonlinear complexity Periodic sequence Recursive methods Sequences Shift registers Sun |
title | Investigations on Periodic Sequences With Maximum Nonlinear Complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20on%20Periodic%20Sequences%20With%20Maximum%20Nonlinear%20Complexity&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhimin%20Sun&rft.date=2017-10-01&rft.volume=63&rft.issue=10&rft.spage=6188&rft.epage=6198&rft.pages=6188-6198&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2714681&rft_dat=%3Cproquest_RIE%3E2174326285%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174326285&rft_id=info:pmid/&rft_ieee_id=7946158&rfr_iscdi=true |