Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices
The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapt...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2018-02, Vol.64 (2), p.752-772 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 2 |
container_start_page | 752 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Said, Salem Hajri, Hatem Bombrun, Lionel Vemuri, Baba C. |
description | The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapted to structured covariance matrices. This paper proposes to meet this challenge by introducing a new class of probability distributions, Gaussian distributions of structured covariance matrices . These are Riemannian analogs of Gaussian distributions, which only sample from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems from three features: 1) they are completely tractable, analytically, or numerically, when dealing with large covariance matrices; 2) they provide a statistical foundation to the concept of structured Riemannian barycentre ( i.e. , Fréchet or geometric mean); and 3) they lead to efficient statistical learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. This paper starts from the observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces. Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and classification of structured covariance matrices, based on Gaussian distribution mixture models. |
doi_str_mv | 10.1109/TIT.2017.2713829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2017_2713829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944616</ieee_id><sourcerecordid>2174497418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6d038042c5af7f16203287ff69f35bf078cc8a7481695716ee825a0135cc0f1f3</originalsourceid><addsrcrecordid>eNo9kU1LAzEURYMoWKt7wU3AlYupeZl8jTupWoWKYCsuQxoTTWlnajJT6L83Q4urkNx7Ho8chC6BjABIdTt_mY8oATmiEkpFqyM0AM5lUQnOjtGAEFBFxZg6RWcpLfOVcaAD1ExMl1IwNX4IqY1h0bWhqRNuavwe3NrUdZ_Nduu1y6nFs42xLt3hWWvaDARrVnjqTKxD_Y0_Q_uTk9jZtovuC4-brYmZtw6_mh536RydeLNK7uJwDtHH0-N8_FxM3yYv4_tpYUsh20J8kVIRRi03XnoQlJRUSe9F5Uu-8EQqa5WRTIGouAThnKLcECi5tcSDL4foZj_3x6z0Joa1iTvdmKCf76e6f8tfBQQqtYXcvd53N7H57Vxq9bLpYp3X0xQkY5VkoHKL7Fs2NilF5__HAtG9Ap0V6F6BPijIyNUeCc65_7rMGgSI8g8ZZIIl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174497418</pqid></control><display><type>article</type><title>Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Said, Salem ; Hajri, Hatem ; Bombrun, Lionel ; Vemuri, Baba C.</creator><creatorcontrib>Said, Salem ; Hajri, Hatem ; Bombrun, Lionel ; Vemuri, Baba C.</creatorcontrib><description>The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapted to structured covariance matrices. This paper proposes to meet this challenge by introducing a new class of probability distributions, Gaussian distributions of structured covariance matrices . These are Riemannian analogs of Gaussian distributions, which only sample from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems from three features: 1) they are completely tractable, analytically, or numerically, when dealing with large covariance matrices; 2) they provide a statistical foundation to the concept of structured Riemannian barycentre ( i.e. , Fréchet or geometric mean); and 3) they lead to efficient statistical learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. This paper starts from the observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces. Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and classification of structured covariance matrices, based on Gaussian distribution mixture models.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2713829</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Computer Science ; Computer vision ; Correlation analysis ; Covariance matrices ; Covariance matrix ; Data processing ; Density ; Estimation ; Extraterrestrial measurements ; Gaussian distribution ; Gaussian mixture model ; Image processing ; Machine learning ; Mathematical analysis ; Matrix methods ; Normal distribution ; Probabilistic models ; Radar data ; Radar imaging ; Riemannian barycentre ; Riemannian symmetric space ; Signal and Image Processing ; Signal processing ; Simulation ; Statistical analysis ; Statistical inference ; Statistical learning ; Structured covariance matrix ; Symmetric matrices</subject><ispartof>IEEE transactions on information theory, 2018-02, Vol.64 (2), p.752-772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6d038042c5af7f16203287ff69f35bf078cc8a7481695716ee825a0135cc0f1f3</citedby><cites>FETCH-LOGICAL-c367t-6d038042c5af7f16203287ff69f35bf078cc8a7481695716ee825a0135cc0f1f3</cites><orcidid>0000-0002-8067-1001 ; 0000-0001-9036-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944616$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944616$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01710198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Said, Salem</creatorcontrib><creatorcontrib>Hajri, Hatem</creatorcontrib><creatorcontrib>Bombrun, Lionel</creatorcontrib><creatorcontrib>Vemuri, Baba C.</creatorcontrib><title>Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapted to structured covariance matrices. This paper proposes to meet this challenge by introducing a new class of probability distributions, Gaussian distributions of structured covariance matrices . These are Riemannian analogs of Gaussian distributions, which only sample from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems from three features: 1) they are completely tractable, analytically, or numerically, when dealing with large covariance matrices; 2) they provide a statistical foundation to the concept of structured Riemannian barycentre ( i.e. , Fréchet or geometric mean); and 3) they lead to efficient statistical learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. This paper starts from the observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces. Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and classification of structured covariance matrices, based on Gaussian distribution mixture models.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Correlation analysis</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Data processing</subject><subject>Density</subject><subject>Estimation</subject><subject>Extraterrestrial measurements</subject><subject>Gaussian distribution</subject><subject>Gaussian mixture model</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Normal distribution</subject><subject>Probabilistic models</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Riemannian barycentre</subject><subject>Riemannian symmetric space</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical learning</subject><subject>Structured covariance matrix</subject><subject>Symmetric matrices</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1LAzEURYMoWKt7wU3AlYupeZl8jTupWoWKYCsuQxoTTWlnajJT6L83Q4urkNx7Ho8chC6BjABIdTt_mY8oATmiEkpFqyM0AM5lUQnOjtGAEFBFxZg6RWcpLfOVcaAD1ExMl1IwNX4IqY1h0bWhqRNuavwe3NrUdZ_Nduu1y6nFs42xLt3hWWvaDARrVnjqTKxD_Y0_Q_uTk9jZtovuC4-brYmZtw6_mh536RydeLNK7uJwDtHH0-N8_FxM3yYv4_tpYUsh20J8kVIRRi03XnoQlJRUSe9F5Uu-8EQqa5WRTIGouAThnKLcECi5tcSDL4foZj_3x6z0Joa1iTvdmKCf76e6f8tfBQQqtYXcvd53N7H57Vxq9bLpYp3X0xQkY5VkoHKL7Fs2NilF5__HAtG9Ap0V6F6BPijIyNUeCc65_7rMGgSI8g8ZZIIl</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Said, Salem</creator><creator>Hajri, Hatem</creator><creator>Bombrun, Lionel</creator><creator>Vemuri, Baba C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8067-1001</orcidid><orcidid>https://orcid.org/0000-0001-9036-3988</orcidid></search><sort><creationdate>20180201</creationdate><title>Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices</title><author>Said, Salem ; Hajri, Hatem ; Bombrun, Lionel ; Vemuri, Baba C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6d038042c5af7f16203287ff69f35bf078cc8a7481695716ee825a0135cc0f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Correlation analysis</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Data processing</topic><topic>Density</topic><topic>Estimation</topic><topic>Extraterrestrial measurements</topic><topic>Gaussian distribution</topic><topic>Gaussian mixture model</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Normal distribution</topic><topic>Probabilistic models</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Riemannian barycentre</topic><topic>Riemannian symmetric space</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical learning</topic><topic>Structured covariance matrix</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Said, Salem</creatorcontrib><creatorcontrib>Hajri, Hatem</creatorcontrib><creatorcontrib>Bombrun, Lionel</creatorcontrib><creatorcontrib>Vemuri, Baba C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Said, Salem</au><au>Hajri, Hatem</au><au>Bombrun, Lionel</au><au>Vemuri, Baba C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>64</volume><issue>2</issue><spage>752</spage><epage>772</epage><pages>752-772</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapted to structured covariance matrices. This paper proposes to meet this challenge by introducing a new class of probability distributions, Gaussian distributions of structured covariance matrices . These are Riemannian analogs of Gaussian distributions, which only sample from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems from three features: 1) they are completely tractable, analytically, or numerically, when dealing with large covariance matrices; 2) they provide a statistical foundation to the concept of structured Riemannian barycentre ( i.e. , Fréchet or geometric mean); and 3) they lead to efficient statistical learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. This paper starts from the observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces. Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and classification of structured covariance matrices, based on Gaussian distribution mixture models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2713829</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8067-1001</orcidid><orcidid>https://orcid.org/0000-0001-9036-3988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-02, Vol.64 (2), p.752-772 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2017_2713829 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Classification Computer Science Computer vision Correlation analysis Covariance matrices Covariance matrix Data processing Density Estimation Extraterrestrial measurements Gaussian distribution Gaussian mixture model Image processing Machine learning Mathematical analysis Matrix methods Normal distribution Probabilistic models Radar data Radar imaging Riemannian barycentre Riemannian symmetric space Signal and Image Processing Signal processing Simulation Statistical analysis Statistical inference Statistical learning Structured covariance matrix Symmetric matrices |
title | Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Distributions%20on%20Riemannian%20Symmetric%20Spaces:%20Statistical%20Learning%20With%20Structured%20Covariance%20Matrices&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Said,%20Salem&rft.date=2018-02-01&rft.volume=64&rft.issue=2&rft.spage=752&rft.epage=772&rft.pages=752-772&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2713829&rft_dat=%3Cproquest_RIE%3E2174497418%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174497418&rft_id=info:pmid/&rft_ieee_id=7944616&rfr_iscdi=true |