Low Correlation Sequences From Linear Combinations of Characters

Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-10, Vol.63 (10), p.6158-6178
Hauptverfasser: Boothby, Kelly T. R., Katz, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6178
container_issue 10
container_start_page 6158
container_title IEEE transactions on information theory
container_volume 63
creator Boothby, Kelly T. R.
Katz, Daniel J.
description Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.
doi_str_mv 10.1109/TIT.2017.2690318
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2017_2690318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891059</ieee_id><sourcerecordid>2174326488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SdzX7elOBHIeDB3JfNdhZT2mzdTRH_vaktnoaB531neAi5BboAoOahXbYLRkEtmDS0An1GZiCEKo0U_JzMKAVdGs71JbnKeT2tXACbkccmfhd1TAk3buzjUHzg1x4Hj7l4SXFbNP2ALk3EtuuHPyIXMRT1p0vOj5jyNbkIbpPx5jTnpH15buu3snl_XdZPTemrqhpLph1KL5X0QXqG3nHEznswClhAKYXTSohVp8AAoNAGleo814HplXChmpP7Y-0uxenBPNp13KdhumgZKF4xybWeKHqkfIo5Jwx2l_qtSz8WqD1ospMme9BkT5qmyN0x0iPiP660ASpM9QvLeGNx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174326488</pqid></control><display><type>article</type><title>Low Correlation Sequences From Linear Combinations of Characters</title><source>IEEE Electronic Library (IEL)</source><creator>Boothby, Kelly T. R. ; Katz, Daniel J.</creator><creatorcontrib>Boothby, Kelly T. R. ; Katz, Daniel J.</creatorcontrib><description>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2690318</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>aperiodic ; Asymptotic properties ; Autocorrelation ; Binary system ; character sequence ; Communication networks ; Correlation ; Crosscorrelation ; Electronic mail ; Fields (mathematics) ; Indexes ; merit factor ; Radar applications ; Random sequences</subject><ispartof>IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6158-6178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</citedby><cites>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</cites><orcidid>0000-0002-0214-8506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boothby, Kelly T. R.</creatorcontrib><creatorcontrib>Katz, Daniel J.</creatorcontrib><title>Low Correlation Sequences From Linear Combinations of Characters</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</description><subject>aperiodic</subject><subject>Asymptotic properties</subject><subject>Autocorrelation</subject><subject>Binary system</subject><subject>character sequence</subject><subject>Communication networks</subject><subject>Correlation</subject><subject>Crosscorrelation</subject><subject>Electronic mail</subject><subject>Fields (mathematics)</subject><subject>Indexes</subject><subject>merit factor</subject><subject>Radar applications</subject><subject>Random sequences</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SdzX7elOBHIeDB3JfNdhZT2mzdTRH_vaktnoaB531neAi5BboAoOahXbYLRkEtmDS0An1GZiCEKo0U_JzMKAVdGs71JbnKeT2tXACbkccmfhd1TAk3buzjUHzg1x4Hj7l4SXFbNP2ALk3EtuuHPyIXMRT1p0vOj5jyNbkIbpPx5jTnpH15buu3snl_XdZPTemrqhpLph1KL5X0QXqG3nHEznswClhAKYXTSohVp8AAoNAGleo814HplXChmpP7Y-0uxenBPNp13KdhumgZKF4xybWeKHqkfIo5Jwx2l_qtSz8WqD1ospMme9BkT5qmyN0x0iPiP660ASpM9QvLeGNx</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Boothby, Kelly T. R.</creator><creator>Katz, Daniel J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0214-8506</orcidid></search><sort><creationdate>20171001</creationdate><title>Low Correlation Sequences From Linear Combinations of Characters</title><author>Boothby, Kelly T. R. ; Katz, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aperiodic</topic><topic>Asymptotic properties</topic><topic>Autocorrelation</topic><topic>Binary system</topic><topic>character sequence</topic><topic>Communication networks</topic><topic>Correlation</topic><topic>Crosscorrelation</topic><topic>Electronic mail</topic><topic>Fields (mathematics)</topic><topic>Indexes</topic><topic>merit factor</topic><topic>Radar applications</topic><topic>Random sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boothby, Kelly T. R.</creatorcontrib><creatorcontrib>Katz, Daniel J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boothby, Kelly T. R.</au><au>Katz, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Correlation Sequences From Linear Combinations of Characters</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>63</volume><issue>10</issue><spage>6158</spage><epage>6178</epage><pages>6158-6178</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2690318</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0214-8506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6158-6178
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2017_2690318
source IEEE Electronic Library (IEL)
subjects aperiodic
Asymptotic properties
Autocorrelation
Binary system
character sequence
Communication networks
Correlation
Crosscorrelation
Electronic mail
Fields (mathematics)
Indexes
merit factor
Radar applications
Random sequences
title Low Correlation Sequences From Linear Combinations of Characters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Correlation%20Sequences%20From%20Linear%20Combinations%20of%20Characters&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Boothby,%20Kelly%20T.%20R.&rft.date=2017-10-01&rft.volume=63&rft.issue=10&rft.spage=6158&rft.epage=6178&rft.pages=6158-6178&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2690318&rft_dat=%3Cproquest_RIE%3E2174326488%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174326488&rft_id=info:pmid/&rft_ieee_id=7891059&rfr_iscdi=true