Low Correlation Sequences From Linear Combinations of Characters
Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly low...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-10, Vol.63 (10), p.6158-6178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6178 |
---|---|
container_issue | 10 |
container_start_page | 6158 |
container_title | IEEE transactions on information theory |
container_volume | 63 |
creator | Boothby, Kelly T. R. Katz, Daniel J. |
description | Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length. |
doi_str_mv | 10.1109/TIT.2017.2690318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2017_2690318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891059</ieee_id><sourcerecordid>2174326488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SdzX7elOBHIeDB3JfNdhZT2mzdTRH_vaktnoaB531neAi5BboAoOahXbYLRkEtmDS0An1GZiCEKo0U_JzMKAVdGs71JbnKeT2tXACbkccmfhd1TAk3buzjUHzg1x4Hj7l4SXFbNP2ALk3EtuuHPyIXMRT1p0vOj5jyNbkIbpPx5jTnpH15buu3snl_XdZPTemrqhpLph1KL5X0QXqG3nHEznswClhAKYXTSohVp8AAoNAGleo814HplXChmpP7Y-0uxenBPNp13KdhumgZKF4xybWeKHqkfIo5Jwx2l_qtSz8WqD1ospMme9BkT5qmyN0x0iPiP660ASpM9QvLeGNx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174326488</pqid></control><display><type>article</type><title>Low Correlation Sequences From Linear Combinations of Characters</title><source>IEEE Electronic Library (IEL)</source><creator>Boothby, Kelly T. R. ; Katz, Daniel J.</creator><creatorcontrib>Boothby, Kelly T. R. ; Katz, Daniel J.</creatorcontrib><description>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2690318</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>aperiodic ; Asymptotic properties ; Autocorrelation ; Binary system ; character sequence ; Communication networks ; Correlation ; Crosscorrelation ; Electronic mail ; Fields (mathematics) ; Indexes ; merit factor ; Radar applications ; Random sequences</subject><ispartof>IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6158-6178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</citedby><cites>FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</cites><orcidid>0000-0002-0214-8506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boothby, Kelly T. R.</creatorcontrib><creatorcontrib>Katz, Daniel J.</creatorcontrib><title>Low Correlation Sequences From Linear Combinations of Characters</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</description><subject>aperiodic</subject><subject>Asymptotic properties</subject><subject>Autocorrelation</subject><subject>Binary system</subject><subject>character sequence</subject><subject>Communication networks</subject><subject>Correlation</subject><subject>Crosscorrelation</subject><subject>Electronic mail</subject><subject>Fields (mathematics)</subject><subject>Indexes</subject><subject>merit factor</subject><subject>Radar applications</subject><subject>Random sequences</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SdzX7elOBHIeDB3JfNdhZT2mzdTRH_vaktnoaB531neAi5BboAoOahXbYLRkEtmDS0An1GZiCEKo0U_JzMKAVdGs71JbnKeT2tXACbkccmfhd1TAk3buzjUHzg1x4Hj7l4SXFbNP2ALk3EtuuHPyIXMRT1p0vOj5jyNbkIbpPx5jTnpH15buu3snl_XdZPTemrqhpLph1KL5X0QXqG3nHEznswClhAKYXTSohVp8AAoNAGleo814HplXChmpP7Y-0uxenBPNp13KdhumgZKF4xybWeKHqkfIo5Jwx2l_qtSz8WqD1ospMme9BkT5qmyN0x0iPiP660ASpM9QvLeGNx</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Boothby, Kelly T. R.</creator><creator>Katz, Daniel J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0214-8506</orcidid></search><sort><creationdate>20171001</creationdate><title>Low Correlation Sequences From Linear Combinations of Characters</title><author>Boothby, Kelly T. R. ; Katz, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-28ae6c676cf6c2eca4eebcc19712fe665a8755db71911e589e77bc48f28d5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aperiodic</topic><topic>Asymptotic properties</topic><topic>Autocorrelation</topic><topic>Binary system</topic><topic>character sequence</topic><topic>Communication networks</topic><topic>Correlation</topic><topic>Crosscorrelation</topic><topic>Electronic mail</topic><topic>Fields (mathematics)</topic><topic>Indexes</topic><topic>merit factor</topic><topic>Radar applications</topic><topic>Random sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boothby, Kelly T. R.</creatorcontrib><creatorcontrib>Katz, Daniel J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boothby, Kelly T. R.</au><au>Katz, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Correlation Sequences From Linear Combinations of Characters</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>63</volume><issue>10</issue><spage>6158</spage><epage>6178</epage><pages>6158-6178</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared with a random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for each sequence in the pair) and significantly lower mean square crosscorrelation values. If we define crosscorrelation merit factor analogously to the usual merit factor for autocorrelation, and if we define demerit factor as the reciprocal of merit factor, then randomly selected binary sequence pairs are known to have an average crosscorrelation demerit factor of 1. Our constructions provide sequence pairs with a crosscorrelation demerit factor significantly less than 1, and at the same time, the autocorrelation demerit factors of the individual sequences can also be made significantly less than 1 (which also indicates better than average performance). The sequence pairs studied here provide combinations of autocorrelation and crosscorrelation performance that are not achievable using sequences formed from single characters, such as maximal linear recursive sequences (m-sequences) and Legendre sequences. In this paper, exact asymptotic formulae are proved for the autocorrelation and crosscorrelation merit factors of sequence pairs formed using linear combinations of multiplicative characters. Data is presented that shows that the asymptotic behavior is closely approximated by sequences of modest length.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2690318</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0214-8506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2017-10, Vol.63 (10), p.6158-6178 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2017_2690318 |
source | IEEE Electronic Library (IEL) |
subjects | aperiodic Asymptotic properties Autocorrelation Binary system character sequence Communication networks Correlation Crosscorrelation Electronic mail Fields (mathematics) Indexes merit factor Radar applications Random sequences |
title | Low Correlation Sequences From Linear Combinations of Characters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Correlation%20Sequences%20From%20Linear%20Combinations%20of%20Characters&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Boothby,%20Kelly%20T.%20R.&rft.date=2017-10-01&rft.volume=63&rft.issue=10&rft.spage=6158&rft.epage=6178&rft.pages=6158-6178&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2690318&rft_dat=%3Cproquest_RIE%3E2174326488%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174326488&rft_id=info:pmid/&rft_ieee_id=7891059&rfr_iscdi=true |