Pliable Index Coding

We formulate a new variant of the index coding problem, where instead of demanding a specific message, clients are pliable, and are interested in receiving any t messages that they do not have. We term this problem pliable index coding or PICOD(t). We prove that, with this formulation, although some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-11, Vol.61 (11), p.6192-6203
Hauptverfasser: Brahma, Siddhartha, Fragouli, Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6203
container_issue 11
container_start_page 6192
container_title IEEE transactions on information theory
container_volume 61
creator Brahma, Siddhartha
Fragouli, Christina
description We formulate a new variant of the index coding problem, where instead of demanding a specific message, clients are pliable, and are interested in receiving any t messages that they do not have. We term this problem pliable index coding or PICOD(t). We prove that, with this formulation, although some instances of the problem become simple, in general, the problem of finding the optimal linear code remains NP-hard. However, we show that it is possible to construct pliable index codes that are substantially smaller than index codes in many cases. If there are n clients, the server has m messages, and each client has a side information set of cardinality s ≤ m - t; we show that O(min{t log n, t + log 2 n}) broadcast transmissions are sufficient to satisfy all the clients. For t = 1, this is an exponential improvement over the n messages required in index coding in the worst case (for m = n). In addition, for t ≫ log 2 n, the number of broadcast transmissions required is only linearly dependent on t. We generalize the results to instances where the side information sets are not necessarily of equal cardinality. When m = O(n δ ), for some constant δ > 0, we show that the codes of size O(min{t log 2 n, t log n + log 3 n}) are sufficient in general. We also consider the scenario when the server only knows the cardinality of the side information sets of the clients and each client is interested in receiving any t messages that it does not have. We term this formulation oblivious pliable index coding or OB-PICOD(t). If the cardinalities of side information sets of all the clients is s (with s ≤ m - t), then we show that min{s + t, m - s} messages are both sufficient and necessary for linear codes. Finally, we develop efficient heuristic approximation algorithms for PICOD(t) and show through simulations on the random instances of PICOD(t) that they perform well in practice.
doi_str_mv 10.1109/TIT.2015.2477821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2015_2477821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7254174</ieee_id><sourcerecordid>3850158451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-407d15f3751d78c8e1a21f6e0f6914ef597be309283647f0b77dd4c6562517e73</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFZvHgQvBS9eUmc2OzuboxQ_AgU91POSJrOSkiY124L-e1NaPHgaBp73ZeZR6gZhigjZwyJfTDUgTbVhdhpP1AiJOMksmVM1AkCXZMa4c3UR42pYDaEeqev3pi6WjUzytpLvyayr6vbzUp2FoolydZxj9fH8tJi9JvO3l3z2OE_KVJttYoArpJAyYcWudIKFxmAFgs3QSKCMl5JCpl1qDQdYMleVKS1ZTcjC6VjdH3o3ffe1k7j16zqW0jRFK90uenRogTTQHr37h666Xd8O13lk7YZ_LLuBggNV9l2MvQS_6et10f94BL_X5AdNfq_JHzUNkdtDpBaRP5w1GWST_gIIql73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728001678</pqid></control><display><type>article</type><title>Pliable Index Coding</title><source>IEEE</source><creator>Brahma, Siddhartha ; Fragouli, Christina</creator><creatorcontrib>Brahma, Siddhartha ; Fragouli, Christina</creatorcontrib><description>We formulate a new variant of the index coding problem, where instead of demanding a specific message, clients are pliable, and are interested in receiving any t messages that they do not have. We term this problem pliable index coding or PICOD(t). We prove that, with this formulation, although some instances of the problem become simple, in general, the problem of finding the optimal linear code remains NP-hard. However, we show that it is possible to construct pliable index codes that are substantially smaller than index codes in many cases. If there are n clients, the server has m messages, and each client has a side information set of cardinality s ≤ m - t; we show that O(min{t log n, t + log 2 n}) broadcast transmissions are sufficient to satisfy all the clients. For t = 1, this is an exponential improvement over the n messages required in index coding in the worst case (for m = n). In addition, for t ≫ log 2 n, the number of broadcast transmissions required is only linearly dependent on t. We generalize the results to instances where the side information sets are not necessarily of equal cardinality. When m = O(n δ ), for some constant δ &gt; 0, we show that the codes of size O(min{t log 2 n, t log n + log 3 n}) are sufficient in general. We also consider the scenario when the server only knows the cardinality of the side information sets of the clients and each client is interested in receiving any t messages that it does not have. We term this formulation oblivious pliable index coding or OB-PICOD(t). If the cardinalities of side information sets of all the clients is s (with s ≤ m - t), then we show that min{s + t, m - s} messages are both sufficient and necessary for linear codes. Finally, we develop efficient heuristic approximation algorithms for PICOD(t) and show through simulations on the random instances of PICOD(t) that they perform well in practice.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2477821</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; broadcast channel ; Broadcasting ; Clients ; Codes ; Coding ; Coding theory ; Constants ; Formulations ; greedy algorithm ; Index coding ; Indexes ; Linear codes ; Messages ; Polynomials ; Probabilistic logic ; Receiving ; Servers ; Simulation ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2015-11, Vol.61 (11), p.6192-6203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-407d15f3751d78c8e1a21f6e0f6914ef597be309283647f0b77dd4c6562517e73</citedby><cites>FETCH-LOGICAL-c324t-407d15f3751d78c8e1a21f6e0f6914ef597be309283647f0b77dd4c6562517e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7254174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7254174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brahma, Siddhartha</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><title>Pliable Index Coding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We formulate a new variant of the index coding problem, where instead of demanding a specific message, clients are pliable, and are interested in receiving any t messages that they do not have. We term this problem pliable index coding or PICOD(t). We prove that, with this formulation, although some instances of the problem become simple, in general, the problem of finding the optimal linear code remains NP-hard. However, we show that it is possible to construct pliable index codes that are substantially smaller than index codes in many cases. If there are n clients, the server has m messages, and each client has a side information set of cardinality s ≤ m - t; we show that O(min{t log n, t + log 2 n}) broadcast transmissions are sufficient to satisfy all the clients. For t = 1, this is an exponential improvement over the n messages required in index coding in the worst case (for m = n). In addition, for t ≫ log 2 n, the number of broadcast transmissions required is only linearly dependent on t. We generalize the results to instances where the side information sets are not necessarily of equal cardinality. When m = O(n δ ), for some constant δ &gt; 0, we show that the codes of size O(min{t log 2 n, t log n + log 3 n}) are sufficient in general. We also consider the scenario when the server only knows the cardinality of the side information sets of the clients and each client is interested in receiving any t messages that it does not have. We term this formulation oblivious pliable index coding or OB-PICOD(t). If the cardinalities of side information sets of all the clients is s (with s ≤ m - t), then we show that min{s + t, m - s} messages are both sufficient and necessary for linear codes. Finally, we develop efficient heuristic approximation algorithms for PICOD(t) and show through simulations on the random instances of PICOD(t) that they perform well in practice.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>broadcast channel</subject><subject>Broadcasting</subject><subject>Clients</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding theory</subject><subject>Constants</subject><subject>Formulations</subject><subject>greedy algorithm</subject><subject>Index coding</subject><subject>Indexes</subject><subject>Linear codes</subject><subject>Messages</subject><subject>Polynomials</subject><subject>Probabilistic logic</subject><subject>Receiving</subject><subject>Servers</subject><subject>Simulation</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFZvHgQvBS9eUmc2OzuboxQ_AgU91POSJrOSkiY124L-e1NaPHgaBp73ZeZR6gZhigjZwyJfTDUgTbVhdhpP1AiJOMksmVM1AkCXZMa4c3UR42pYDaEeqev3pi6WjUzytpLvyayr6vbzUp2FoolydZxj9fH8tJi9JvO3l3z2OE_KVJttYoArpJAyYcWudIKFxmAFgs3QSKCMl5JCpl1qDQdYMleVKS1ZTcjC6VjdH3o3ffe1k7j16zqW0jRFK90uenRogTTQHr37h666Xd8O13lk7YZ_LLuBggNV9l2MvQS_6et10f94BL_X5AdNfq_JHzUNkdtDpBaRP5w1GWST_gIIql73</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Brahma, Siddhartha</creator><creator>Fragouli, Christina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>Pliable Index Coding</title><author>Brahma, Siddhartha ; Fragouli, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-407d15f3751d78c8e1a21f6e0f6914ef597be309283647f0b77dd4c6562517e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>broadcast channel</topic><topic>Broadcasting</topic><topic>Clients</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding theory</topic><topic>Constants</topic><topic>Formulations</topic><topic>greedy algorithm</topic><topic>Index coding</topic><topic>Indexes</topic><topic>Linear codes</topic><topic>Messages</topic><topic>Polynomials</topic><topic>Probabilistic logic</topic><topic>Receiving</topic><topic>Servers</topic><topic>Simulation</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahma, Siddhartha</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brahma, Siddhartha</au><au>Fragouli, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pliable Index Coding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-11</date><risdate>2015</risdate><volume>61</volume><issue>11</issue><spage>6192</spage><epage>6203</epage><pages>6192-6203</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We formulate a new variant of the index coding problem, where instead of demanding a specific message, clients are pliable, and are interested in receiving any t messages that they do not have. We term this problem pliable index coding or PICOD(t). We prove that, with this formulation, although some instances of the problem become simple, in general, the problem of finding the optimal linear code remains NP-hard. However, we show that it is possible to construct pliable index codes that are substantially smaller than index codes in many cases. If there are n clients, the server has m messages, and each client has a side information set of cardinality s ≤ m - t; we show that O(min{t log n, t + log 2 n}) broadcast transmissions are sufficient to satisfy all the clients. For t = 1, this is an exponential improvement over the n messages required in index coding in the worst case (for m = n). In addition, for t ≫ log 2 n, the number of broadcast transmissions required is only linearly dependent on t. We generalize the results to instances where the side information sets are not necessarily of equal cardinality. When m = O(n δ ), for some constant δ &gt; 0, we show that the codes of size O(min{t log 2 n, t log n + log 3 n}) are sufficient in general. We also consider the scenario when the server only knows the cardinality of the side information sets of the clients and each client is interested in receiving any t messages that it does not have. We term this formulation oblivious pliable index coding or OB-PICOD(t). If the cardinalities of side information sets of all the clients is s (with s ≤ m - t), then we show that min{s + t, m - s} messages are both sufficient and necessary for linear codes. Finally, we develop efficient heuristic approximation algorithms for PICOD(t) and show through simulations on the random instances of PICOD(t) that they perform well in practice.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2477821</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-11, Vol.61 (11), p.6192-6203
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2015_2477821
source IEEE
subjects Algorithms
Approximation
broadcast channel
Broadcasting
Clients
Codes
Coding
Coding theory
Constants
Formulations
greedy algorithm
Index coding
Indexes
Linear codes
Messages
Polynomials
Probabilistic logic
Receiving
Servers
Simulation
Upper bound
title Pliable Index Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pliable%20Index%20Coding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Brahma,%20Siddhartha&rft.date=2015-11&rft.volume=61&rft.issue=11&rft.spage=6192&rft.epage=6203&rft.pages=6192-6203&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2477821&rft_dat=%3Cproquest_RIE%3E3850158451%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728001678&rft_id=info:pmid/&rft_ieee_id=7254174&rfr_iscdi=true