Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources
We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-03, Vol.61 (3), p.1277-1297 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1297 |
---|---|
container_issue | 3 |
container_start_page | 1277 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Seroussi, Gadiel Weinberger, Marcelo J. |
description | We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown. |
doi_str_mv | 10.1109/TIT.2014.2386860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2014_2386860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7000618</ieee_id><sourcerecordid>3597615651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zkk02yx1JsLVQLuj2HZDOrW7qbmmyF_ntTKp6GmXnf-XgQuqdkQikpn6plNckJ5ZOcKaEEuUAjWhQyK0XBL9GIEKqyknN1jW5i3KaUFzQfoWq9H9rO7PB09-lDO3x1ETc-4E3f_kCIqfFueuc7_HboLAS8gB6CGVrf43lI5XnbtwPgV-h8OOIPfwg1xFt01ZhdhLu_OEab-XM1e8lW68VyNl1ldV7SIWMOiLTWOVIaSxrlGsodWEeNlYZxKUhhoc6pVaoxJAdjeQPG5ayouaRCsjF6PM_dB_99gDjobTqgTys1FYVggjN5UpGzqg4-xgCN3of0cjhqSvSJnU7s9Imd_mOXLA9nSwsA_3JJCBFUsV9JB2vO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656364377</pqid></control><display><type>article</type><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><source>IEEE Electronic Library (IEL)</source><creator>Seroussi, Gadiel ; Weinberger, Marcelo J.</creator><creatorcontrib>Seroussi, Gadiel ; Weinberger, Marcelo J.</creatorcontrib><description>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2386860</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Data compression ; Entropy ; Information theory ; Input output ; Markov analysis ; Markov processes ; Random number generation ; Simulation</subject><ispartof>IEEE transactions on information theory, 2015-03, Vol.61 (3), p.1277-1297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</citedby><cites>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7000618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7000618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seroussi, Gadiel</creatorcontrib><creatorcontrib>Weinberger, Marcelo J.</creatorcontrib><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</description><subject>Convergence</subject><subject>Data compression</subject><subject>Entropy</subject><subject>Information theory</subject><subject>Input output</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Random number generation</subject><subject>Simulation</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zkk02yx1JsLVQLuj2HZDOrW7qbmmyF_ntTKp6GmXnf-XgQuqdkQikpn6plNckJ5ZOcKaEEuUAjWhQyK0XBL9GIEKqyknN1jW5i3KaUFzQfoWq9H9rO7PB09-lDO3x1ETc-4E3f_kCIqfFueuc7_HboLAS8gB6CGVrf43lI5XnbtwPgV-h8OOIPfwg1xFt01ZhdhLu_OEab-XM1e8lW68VyNl1ldV7SIWMOiLTWOVIaSxrlGsodWEeNlYZxKUhhoc6pVaoxJAdjeQPG5ayouaRCsjF6PM_dB_99gDjobTqgTys1FYVggjN5UpGzqg4-xgCN3of0cjhqSvSJnU7s9Imd_mOXLA9nSwsA_3JJCBFUsV9JB2vO</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Seroussi, Gadiel</creator><creator>Weinberger, Marcelo J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201503</creationdate><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><author>Seroussi, Gadiel ; Weinberger, Marcelo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convergence</topic><topic>Data compression</topic><topic>Entropy</topic><topic>Information theory</topic><topic>Input output</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Random number generation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seroussi, Gadiel</creatorcontrib><creatorcontrib>Weinberger, Marcelo J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seroussi, Gadiel</au><au>Weinberger, Marcelo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-03</date><risdate>2015</risdate><volume>61</volume><issue>3</issue><spage>1277</spage><epage>1297</epage><pages>1277-1297</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2386860</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-03, Vol.61 (3), p.1277-1297 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2014_2386860 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Data compression Entropy Information theory Input output Markov analysis Markov processes Random number generation Simulation |
title | Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Algorithms%20for%20Universal%20Random%20Number%20Generation%20From%20Finite%20Memory%20Sources&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Seroussi,%20Gadiel&rft.date=2015-03&rft.volume=61&rft.issue=3&rft.spage=1277&rft.epage=1297&rft.pages=1277-1297&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2386860&rft_dat=%3Cproquest_RIE%3E3597615651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656364377&rft_id=info:pmid/&rft_ieee_id=7000618&rfr_iscdi=true |