Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources

We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-03, Vol.61 (3), p.1277-1297
Hauptverfasser: Seroussi, Gadiel, Weinberger, Marcelo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1297
container_issue 3
container_start_page 1277
container_title IEEE transactions on information theory
container_volume 61
creator Seroussi, Gadiel
Weinberger, Marcelo J.
description We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.
doi_str_mv 10.1109/TIT.2014.2386860
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2014_2386860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7000618</ieee_id><sourcerecordid>3597615651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zkk02yx1JsLVQLuj2HZDOrW7qbmmyF_ntTKp6GmXnf-XgQuqdkQikpn6plNckJ5ZOcKaEEuUAjWhQyK0XBL9GIEKqyknN1jW5i3KaUFzQfoWq9H9rO7PB09-lDO3x1ETc-4E3f_kCIqfFueuc7_HboLAS8gB6CGVrf43lI5XnbtwPgV-h8OOIPfwg1xFt01ZhdhLu_OEab-XM1e8lW68VyNl1ldV7SIWMOiLTWOVIaSxrlGsodWEeNlYZxKUhhoc6pVaoxJAdjeQPG5ayouaRCsjF6PM_dB_99gDjobTqgTys1FYVggjN5UpGzqg4-xgCN3of0cjhqSvSJnU7s9Imd_mOXLA9nSwsA_3JJCBFUsV9JB2vO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656364377</pqid></control><display><type>article</type><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><source>IEEE Electronic Library (IEL)</source><creator>Seroussi, Gadiel ; Weinberger, Marcelo J.</creator><creatorcontrib>Seroussi, Gadiel ; Weinberger, Marcelo J.</creatorcontrib><description>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2386860</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Data compression ; Entropy ; Information theory ; Input output ; Markov analysis ; Markov processes ; Random number generation ; Simulation</subject><ispartof>IEEE transactions on information theory, 2015-03, Vol.61 (3), p.1277-1297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</citedby><cites>FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7000618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7000618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seroussi, Gadiel</creatorcontrib><creatorcontrib>Weinberger, Marcelo J.</creatorcontrib><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</description><subject>Convergence</subject><subject>Data compression</subject><subject>Entropy</subject><subject>Information theory</subject><subject>Input output</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Random number generation</subject><subject>Simulation</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zkk02yx1JsLVQLuj2HZDOrW7qbmmyF_ntTKp6GmXnf-XgQuqdkQikpn6plNckJ5ZOcKaEEuUAjWhQyK0XBL9GIEKqyknN1jW5i3KaUFzQfoWq9H9rO7PB09-lDO3x1ETc-4E3f_kCIqfFueuc7_HboLAS8gB6CGVrf43lI5XnbtwPgV-h8OOIPfwg1xFt01ZhdhLu_OEab-XM1e8lW68VyNl1ldV7SIWMOiLTWOVIaSxrlGsodWEeNlYZxKUhhoc6pVaoxJAdjeQPG5ayouaRCsjF6PM_dB_99gDjobTqgTys1FYVggjN5UpGzqg4-xgCN3of0cjhqSvSJnU7s9Imd_mOXLA9nSwsA_3JJCBFUsV9JB2vO</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Seroussi, Gadiel</creator><creator>Weinberger, Marcelo J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201503</creationdate><title>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</title><author>Seroussi, Gadiel ; Weinberger, Marcelo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3de07bbdd09ab0f8df14debd1ab7a347605bec21b88fa02eab4fead235c471673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convergence</topic><topic>Data compression</topic><topic>Entropy</topic><topic>Information theory</topic><topic>Input output</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Random number generation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seroussi, Gadiel</creatorcontrib><creatorcontrib>Weinberger, Marcelo J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seroussi, Gadiel</au><au>Weinberger, Marcelo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-03</date><risdate>2015</risdate><volume>61</volume><issue>3</issue><spage>1277</spage><epage>1297</epage><pages>1277-1297</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2386860</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-03, Vol.61 (3), p.1277-1297
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2014_2386860
source IEEE Electronic Library (IEL)
subjects Convergence
Data compression
Entropy
Information theory
Input output
Markov analysis
Markov processes
Random number generation
Simulation
title Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Algorithms%20for%20Universal%20Random%20Number%20Generation%20From%20Finite%20Memory%20Sources&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Seroussi,%20Gadiel&rft.date=2015-03&rft.volume=61&rft.issue=3&rft.spage=1277&rft.epage=1297&rft.pages=1277-1297&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2386860&rft_dat=%3Cproquest_RIE%3E3597615651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656364377&rft_id=info:pmid/&rft_ieee_id=7000618&rfr_iscdi=true