Semidefinite Code Bounds Based on Quadruple Distances
Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 136...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2012-05, Vol.58 (5), p.2697-2705 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2705 |
---|---|
container_issue | 5 |
container_start_page | 2697 |
container_title | IEEE transactions on information theory |
container_volume | 58 |
creator | Gijswijt, D. C. Mittelmann, H. D. Schrijver, A. |
description | Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d . |
doi_str_mv | 10.1109/TIT.2012.2184845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2012_2184845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6142090</ieee_id><sourcerecordid>1022908958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACF5SZz-ze9T6VSiIWM9hs5nAljSpu8nBf--Wlh48DcM878vwEHJNYUYpmIfVYjVjQNmMUS20kCdkQqUscqOkOCUTAKpzI4Q-JxcxrtMqJGUTIr9w42tsfOcHzOZ9jdlTP3Z1zJ5sxDrru-xztHUYty1mzz4OtnMYL8lZY9uIV4c5Jd-vL6v5e778eFvMH5e540YNuTCWCypQAzADjatUhcBrXSmVZmErR5VFtIVw1jaWG42q4lVtpAPNKsOn5H7fuw39z4hxKDc-Omxb22E_xpICS8XaSJ3Q23_ouh9Dl75LFBhegNaQKNhTLvQxBmzKbfAbG34TVO48lsljufNYHjymyN2h2EZn2yYkAz4ec0xqVghVJO5mz3lEPJ4VFQwM8D99onmj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009370880</pqid></control><display><type>article</type><title>Semidefinite Code Bounds Based on Quadruple Distances</title><source>IEEE Electronic Library (IEL)</source><creator>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</creator><creatorcontrib>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</creatorcontrib><description>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2012.2184845</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Blocking ; code ; Codes ; Coding, codes ; Computer programming ; Educational institutions ; error-correcting ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Invariants ; Mathematical analysis ; Matrices ; Matrix methods ; Optimization ; Polynomials ; Programming ; semidefinite ; Signal and communications theory ; Symmetric matrices ; Telecommunications and information theory ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2012-05, Vol.58 (5), p.2697-2705</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</citedby><cites>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6142090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6142090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25827467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gijswijt, D. C.</creatorcontrib><creatorcontrib>Mittelmann, H. D.</creatorcontrib><creatorcontrib>Schrijver, A.</creatorcontrib><title>Semidefinite Code Bounds Based on Quadruple Distances</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Blocking</subject><subject>code</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Computer programming</subject><subject>Educational institutions</subject><subject>error-correcting</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Programming</subject><subject>semidefinite</subject><subject>Signal and communications theory</subject><subject>Symmetric matrices</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACF5SZz-ze9T6VSiIWM9hs5nAljSpu8nBf--Wlh48DcM878vwEHJNYUYpmIfVYjVjQNmMUS20kCdkQqUscqOkOCUTAKpzI4Q-JxcxrtMqJGUTIr9w42tsfOcHzOZ9jdlTP3Z1zJ5sxDrru-xztHUYty1mzz4OtnMYL8lZY9uIV4c5Jd-vL6v5e778eFvMH5e540YNuTCWCypQAzADjatUhcBrXSmVZmErR5VFtIVw1jaWG42q4lVtpAPNKsOn5H7fuw39z4hxKDc-Omxb22E_xpICS8XaSJ3Q23_ouh9Dl75LFBhegNaQKNhTLvQxBmzKbfAbG34TVO48lsljufNYHjymyN2h2EZn2yYkAz4ec0xqVghVJO5mz3lEPJ4VFQwM8D99onmj</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Gijswijt, D. C.</creator><creator>Mittelmann, H. D.</creator><creator>Schrijver, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Semidefinite Code Bounds Based on Quadruple Distances</title><author>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Blocking</topic><topic>code</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Computer programming</topic><topic>Educational institutions</topic><topic>error-correcting</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Programming</topic><topic>semidefinite</topic><topic>Signal and communications theory</topic><topic>Symmetric matrices</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gijswijt, D. C.</creatorcontrib><creatorcontrib>Mittelmann, H. D.</creatorcontrib><creatorcontrib>Schrijver, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gijswijt, D. C.</au><au>Mittelmann, H. D.</au><au>Schrijver, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semidefinite Code Bounds Based on Quadruple Distances</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>58</volume><issue>5</issue><spage>2697</spage><epage>2705</epage><pages>2697-2705</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2012.2184845</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2012-05, Vol.58 (5), p.2697-2705 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2012_2184845 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Applied sciences Blocking code Codes Coding, codes Computer programming Educational institutions error-correcting Exact sciences and technology Information theory Information, signal and communications theory Invariants Mathematical analysis Matrices Matrix methods Optimization Polynomials Programming semidefinite Signal and communications theory Symmetric matrices Telecommunications and information theory Upper bound |
title | Semidefinite Code Bounds Based on Quadruple Distances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semidefinite%20Code%20Bounds%20Based%20on%20Quadruple%20Distances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gijswijt,%20D.%20C.&rft.date=2012-05-01&rft.volume=58&rft.issue=5&rft.spage=2697&rft.epage=2705&rft.pages=2697-2705&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2012.2184845&rft_dat=%3Cproquest_RIE%3E1022908958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009370880&rft_id=info:pmid/&rft_ieee_id=6142090&rfr_iscdi=true |