Semidefinite Code Bounds Based on Quadruple Distances

Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 136...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-05, Vol.58 (5), p.2697-2705
Hauptverfasser: Gijswijt, D. C., Mittelmann, H. D., Schrijver, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2705
container_issue 5
container_start_page 2697
container_title IEEE transactions on information theory
container_volume 58
creator Gijswijt, D. C.
Mittelmann, H. D.
Schrijver, A.
description Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .
doi_str_mv 10.1109/TIT.2012.2184845
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2012_2184845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6142090</ieee_id><sourcerecordid>1022908958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACF5SZz-ze9T6VSiIWM9hs5nAljSpu8nBf--Wlh48DcM878vwEHJNYUYpmIfVYjVjQNmMUS20kCdkQqUscqOkOCUTAKpzI4Q-JxcxrtMqJGUTIr9w42tsfOcHzOZ9jdlTP3Z1zJ5sxDrru-xztHUYty1mzz4OtnMYL8lZY9uIV4c5Jd-vL6v5e778eFvMH5e540YNuTCWCypQAzADjatUhcBrXSmVZmErR5VFtIVw1jaWG42q4lVtpAPNKsOn5H7fuw39z4hxKDc-Omxb22E_xpICS8XaSJ3Q23_ouh9Dl75LFBhegNaQKNhTLvQxBmzKbfAbG34TVO48lsljufNYHjymyN2h2EZn2yYkAz4ec0xqVghVJO5mz3lEPJ4VFQwM8D99onmj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009370880</pqid></control><display><type>article</type><title>Semidefinite Code Bounds Based on Quadruple Distances</title><source>IEEE Electronic Library (IEL)</source><creator>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</creator><creatorcontrib>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</creatorcontrib><description>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2012.2184845</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Blocking ; code ; Codes ; Coding, codes ; Computer programming ; Educational institutions ; error-correcting ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Invariants ; Mathematical analysis ; Matrices ; Matrix methods ; Optimization ; Polynomials ; Programming ; semidefinite ; Signal and communications theory ; Symmetric matrices ; Telecommunications and information theory ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2012-05, Vol.58 (5), p.2697-2705</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</citedby><cites>FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6142090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6142090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25827467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gijswijt, D. C.</creatorcontrib><creatorcontrib>Mittelmann, H. D.</creatorcontrib><creatorcontrib>Schrijver, A.</creatorcontrib><title>Semidefinite Code Bounds Based on Quadruple Distances</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Blocking</subject><subject>code</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Computer programming</subject><subject>Educational institutions</subject><subject>error-correcting</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Programming</subject><subject>semidefinite</subject><subject>Signal and communications theory</subject><subject>Symmetric matrices</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACF5SZz-ze9T6VSiIWM9hs5nAljSpu8nBf--Wlh48DcM878vwEHJNYUYpmIfVYjVjQNmMUS20kCdkQqUscqOkOCUTAKpzI4Q-JxcxrtMqJGUTIr9w42tsfOcHzOZ9jdlTP3Z1zJ5sxDrru-xztHUYty1mzz4OtnMYL8lZY9uIV4c5Jd-vL6v5e778eFvMH5e540YNuTCWCypQAzADjatUhcBrXSmVZmErR5VFtIVw1jaWG42q4lVtpAPNKsOn5H7fuw39z4hxKDc-Omxb22E_xpICS8XaSJ3Q23_ouh9Dl75LFBhegNaQKNhTLvQxBmzKbfAbG34TVO48lsljufNYHjymyN2h2EZn2yYkAz4ec0xqVghVJO5mz3lEPJ4VFQwM8D99onmj</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Gijswijt, D. C.</creator><creator>Mittelmann, H. D.</creator><creator>Schrijver, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Semidefinite Code Bounds Based on Quadruple Distances</title><author>Gijswijt, D. C. ; Mittelmann, H. D. ; Schrijver, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-49a3414e800290fcb6be03d8b66e037abc16aeea74caafa398e6b3bd95c082b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Blocking</topic><topic>code</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Computer programming</topic><topic>Educational institutions</topic><topic>error-correcting</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Programming</topic><topic>semidefinite</topic><topic>Signal and communications theory</topic><topic>Symmetric matrices</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gijswijt, D. C.</creatorcontrib><creatorcontrib>Mittelmann, H. D.</creatorcontrib><creatorcontrib>Schrijver, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gijswijt, D. C.</au><au>Mittelmann, H. D.</au><au>Schrijver, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semidefinite Code Bounds Based on Quadruple Distances</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>58</volume><issue>5</issue><spage>2697</spage><epage>2705</epage><pages>2697-2705</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Let A ( n , d ) be the maximum number of 0, 1 words of length n , any two having Hamming distance at least d . It is proved that A (20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, it is shown that A (18,6) ≤ 673, A (19,6) ≤ 1237, A (20,6) ≤ 2279, A (23,6) ≤ 13674, A (19,8) ≤ 135, A (25,8) ≤ 5421, A (26,8) ≤ 9275, A (27,8) ≤ 17099, A (21,10) ≤ 47, A (22,10) ≤ 84, A (24,10) ≤ 268, A (25,10) ≤ 466, A (26,10) ≤ 836, A (27,10) ≤ 1585, A (28,10) ≤ 2817, A (25,12) ≤ 55, and A (26,12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A ( n , d ). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2012.2184845</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2012-05, Vol.58 (5), p.2697-2705
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2012_2184845
source IEEE Electronic Library (IEL)
subjects Algebra
Applied sciences
Blocking
code
Codes
Coding, codes
Computer programming
Educational institutions
error-correcting
Exact sciences and technology
Information theory
Information, signal and communications theory
Invariants
Mathematical analysis
Matrices
Matrix methods
Optimization
Polynomials
Programming
semidefinite
Signal and communications theory
Symmetric matrices
Telecommunications and information theory
Upper bound
title Semidefinite Code Bounds Based on Quadruple Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semidefinite%20Code%20Bounds%20Based%20on%20Quadruple%20Distances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gijswijt,%20D.%20C.&rft.date=2012-05-01&rft.volume=58&rft.issue=5&rft.spage=2697&rft.epage=2705&rft.pages=2697-2705&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2012.2184845&rft_dat=%3Cproquest_RIE%3E1022908958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009370880&rft_id=info:pmid/&rft_ieee_id=6142090&rfr_iscdi=true