Classification of Binary Constant Weight Codes

A binary code C ⊆ F 2 n with minimum distance at least d and codewords of Hamming weight w is called an (n , d , w ) constant weight code. The maximum size of an (n , d , w ) constant weight code is denoted by A ( n , d , w ), and codes of this size are said to be optimal. In a computer-aided approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-08, Vol.56 (8), p.3779-3785
1. Verfasser: Ostergard, P R J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3785
container_issue 8
container_start_page 3779
container_title IEEE transactions on information theory
container_volume 56
creator Ostergard, P R J
description A binary code C ⊆ F 2 n with minimum distance at least d and codewords of Hamming weight w is called an (n , d , w ) constant weight code. The maximum size of an (n , d , w ) constant weight code is denoted by A ( n , d , w ), and codes of this size are said to be optimal. In a computer-aided approach, optimal (n , d , w ) constant weight codes are here classified up to equivalence for d =4, n ≤ 12; d =6, n ≤ 14; d =8, n ≤ 17; d =10, n ≤ 20 (with one exception); d =12, n ≤ 23; d =14, n ≤ 26; d =16, n ≤ 28; and d =18, n ≤ 28. Moreover, several new upper bounds on A ( n , d , w ) are obtained, leading among other things to the exact values A (12,4,5)=80, A (15,6,7)=69, A (18,8,7)=33, A (19,8,7)=52, A (19,8,8)=78, and A (20,8,8)=130 . Since A (15,6,6)=70, this gives the first known example of parameters for which A ( n , d , w -1) > A ( n , d , w ) with w ≤ n /2. A scheme based on double counting is developed for validating the classification results.
doi_str_mv 10.1109/TIT.2010.2050922
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2010_2050922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5508621</ieee_id><sourcerecordid>818832263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-7c7d444d631642ef86d6285cf871311282643aeaf66c1e02edd259428ff1ee8a3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EEqWwI7FELEwJvovtOCNEfFSqxFLEaFnOGVylSYnTgf8eV60YmE5P-r17d4-xa-AFAK_vV4tVgTwp5JLXiCdsBlJWea2kOGUzzkHntRD6nF3EuE5SSMAZK5rOxhh8cHYKQ58NPnsMvR1_smbo42T7Kfug8Pk1Jd1SvGRn3naRro5zzt6fn1bNa758e1k0D8vclYhTXrmqFUK0qgQlkLxWrUItndcVlACoUYnSkvVKOSCO1LYoa4HaeyDStpyzu8Pe7Th87yhOZhOio66zPQ27aDRonZJUmcjbf-R62I19Os5UIkWB1CpB_AC5cYhxJG-2Y9ikLw1ws6_PpPrMvj5zrC9Zbg6WQER_uJRcK4TyF2IfaO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741121586</pqid></control><display><type>article</type><title>Classification of Binary Constant Weight Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Ostergard, P R J</creator><creatorcontrib>Ostergard, P R J</creatorcontrib><description>A binary code C ⊆ F 2 n with minimum distance at least d and codewords of Hamming weight w is called an (n , d , w ) constant weight code. The maximum size of an (n , d , w ) constant weight code is denoted by A ( n , d , w ), and codes of this size are said to be optimal. In a computer-aided approach, optimal (n , d , w ) constant weight codes are here classified up to equivalence for d =4, n ≤ 12; d =6, n ≤ 14; d =8, n ≤ 17; d =10, n ≤ 20 (with one exception); d =12, n ≤ 23; d =14, n ≤ 26; d =16, n ≤ 28; and d =18, n ≤ 28. Moreover, several new upper bounds on A ( n , d , w ) are obtained, leading among other things to the exact values A (12,4,5)=80, A (15,6,7)=69, A (18,8,7)=33, A (19,8,7)=52, A (19,8,8)=78, and A (20,8,8)=130 . Since A (15,6,6)=70, this gives the first known example of parameters for which A ( n , d , w -1) &gt; A ( n , d , w ) with w ≤ n /2. A scheme based on double counting is developed for validating the classification results.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2050922</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Classification ; code equivalence ; Codes ; constant weight code ; Counting ; double counting ; Electronic mail ; Hamming distance ; Hamming weight ; Information theory ; Johnson bound ; Optimization ; Symbols ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2010-08, Vol.56 (8), p.3779-3785</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-7c7d444d631642ef86d6285cf871311282643aeaf66c1e02edd259428ff1ee8a3</citedby><cites>FETCH-LOGICAL-c322t-7c7d444d631642ef86d6285cf871311282643aeaf66c1e02edd259428ff1ee8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5508621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5508621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ostergard, P R J</creatorcontrib><title>Classification of Binary Constant Weight Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A binary code C ⊆ F 2 n with minimum distance at least d and codewords of Hamming weight w is called an (n , d , w ) constant weight code. The maximum size of an (n , d , w ) constant weight code is denoted by A ( n , d , w ), and codes of this size are said to be optimal. In a computer-aided approach, optimal (n , d , w ) constant weight codes are here classified up to equivalence for d =4, n ≤ 12; d =6, n ≤ 14; d =8, n ≤ 17; d =10, n ≤ 20 (with one exception); d =12, n ≤ 23; d =14, n ≤ 26; d =16, n ≤ 28; and d =18, n ≤ 28. Moreover, several new upper bounds on A ( n , d , w ) are obtained, leading among other things to the exact values A (12,4,5)=80, A (15,6,7)=69, A (18,8,7)=33, A (19,8,7)=52, A (19,8,8)=78, and A (20,8,8)=130 . Since A (15,6,6)=70, this gives the first known example of parameters for which A ( n , d , w -1) &gt; A ( n , d , w ) with w ≤ n /2. A scheme based on double counting is developed for validating the classification results.</description><subject>Binary codes</subject><subject>Classification</subject><subject>code equivalence</subject><subject>Codes</subject><subject>constant weight code</subject><subject>Counting</subject><subject>double counting</subject><subject>Electronic mail</subject><subject>Hamming distance</subject><subject>Hamming weight</subject><subject>Information theory</subject><subject>Johnson bound</subject><subject>Optimization</subject><subject>Symbols</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkL1PwzAQxS0EEqWwI7FELEwJvovtOCNEfFSqxFLEaFnOGVylSYnTgf8eV60YmE5P-r17d4-xa-AFAK_vV4tVgTwp5JLXiCdsBlJWea2kOGUzzkHntRD6nF3EuE5SSMAZK5rOxhh8cHYKQ58NPnsMvR1_smbo42T7Kfug8Pk1Jd1SvGRn3naRro5zzt6fn1bNa758e1k0D8vclYhTXrmqFUK0qgQlkLxWrUItndcVlACoUYnSkvVKOSCO1LYoa4HaeyDStpyzu8Pe7Th87yhOZhOio66zPQ27aDRonZJUmcjbf-R62I19Os5UIkWB1CpB_AC5cYhxJG-2Y9ikLw1ws6_PpPrMvj5zrC9Zbg6WQER_uJRcK4TyF2IfaO8</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Ostergard, P R J</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>Classification of Binary Constant Weight Codes</title><author>Ostergard, P R J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-7c7d444d631642ef86d6285cf871311282643aeaf66c1e02edd259428ff1ee8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binary codes</topic><topic>Classification</topic><topic>code equivalence</topic><topic>Codes</topic><topic>constant weight code</topic><topic>Counting</topic><topic>double counting</topic><topic>Electronic mail</topic><topic>Hamming distance</topic><topic>Hamming weight</topic><topic>Information theory</topic><topic>Johnson bound</topic><topic>Optimization</topic><topic>Symbols</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostergard, P R J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ostergard, P R J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Binary Constant Weight Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-08</date><risdate>2010</risdate><volume>56</volume><issue>8</issue><spage>3779</spage><epage>3785</epage><pages>3779-3785</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A binary code C ⊆ F 2 n with minimum distance at least d and codewords of Hamming weight w is called an (n , d , w ) constant weight code. The maximum size of an (n , d , w ) constant weight code is denoted by A ( n , d , w ), and codes of this size are said to be optimal. In a computer-aided approach, optimal (n , d , w ) constant weight codes are here classified up to equivalence for d =4, n ≤ 12; d =6, n ≤ 14; d =8, n ≤ 17; d =10, n ≤ 20 (with one exception); d =12, n ≤ 23; d =14, n ≤ 26; d =16, n ≤ 28; and d =18, n ≤ 28. Moreover, several new upper bounds on A ( n , d , w ) are obtained, leading among other things to the exact values A (12,4,5)=80, A (15,6,7)=69, A (18,8,7)=33, A (19,8,7)=52, A (19,8,8)=78, and A (20,8,8)=130 . Since A (15,6,6)=70, this gives the first known example of parameters for which A ( n , d , w -1) &gt; A ( n , d , w ) with w ≤ n /2. A scheme based on double counting is developed for validating the classification results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2050922</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2010-08, Vol.56 (8), p.3779-3785
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2010_2050922
source IEEE Electronic Library (IEL)
subjects Binary codes
Classification
code equivalence
Codes
constant weight code
Counting
double counting
Electronic mail
Hamming distance
Hamming weight
Information theory
Johnson bound
Optimization
Symbols
Upper bound
Upper bounds
title Classification of Binary Constant Weight Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Binary%20Constant%20Weight%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ostergard,%20P%20R%20J&rft.date=2010-08&rft.volume=56&rft.issue=8&rft.spage=3779&rft.epage=3785&rft.pages=3779-3785&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2050922&rft_dat=%3Cproquest_RIE%3E818832263%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741121586&rft_id=info:pmid/&rft_ieee_id=5508621&rfr_iscdi=true