Quantization for Nonparametric Regression

The authors discuss quantization or clustering of nonparametric regression estimates. The main tools developed are oracle inequalities for the rate of convergence of constrained least squares estimates. These inequalities yield fast rates for both nonparametric (unconstrained) least squares regressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-02, Vol.54 (2), p.867-874
Hauptverfasser: Gyorfi, L., Wegkamp, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors discuss quantization or clustering of nonparametric regression estimates. The main tools developed are oracle inequalities for the rate of convergence of constrained least squares estimates. These inequalities yield fast rates for both nonparametric (unconstrained) least squares regression and clustering of partition regression estimates and plug-in empirical quantizers. The bounds on the rate of convergence generalize known results for bounded errors to subGaussian, too.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2007.913565