On sequential strategies for loss functions with memory

The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-07, Vol.48 (7), p.1947-1958
Hauptverfasser: Merhav, N., Ordentlich, E., Seroussi, G., Weinberger, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 7
container_start_page 1947
container_title IEEE transactions on information theory
container_volume 48
creator Merhav, N.
Ordentlich, E.
Seroussi, G.
Weinberger, M.J.
description The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.
doi_str_mv 10.1109/TIT.2002.1013135
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2002_1013135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1013135</ieee_id><sourcerecordid>131914271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKt3wcviQbxszeSxSY5SfBQKvdRzyGYT3bKPmuwi_ntTtgfx4GlmmG-GmQ-ha8ALAKwetqvtgmBMFoCBAuUnaAaci1wVnJ2iGcYgc8WYPEcXMe5SyTiQGRKbLovuc3TdUJsmi0Mwg3uvXcx8H7KmjykZOzvUfRezr3r4yFrX9uH7Ep1500R3dYxz9Pb8tF2-5uvNy2r5uM4tI3jIhaLK-qqiJS0raQQz1jJcckaL0ljHHYjCEsekLK03pWIeM0pV5az3RSUpnaO7ae8-9OnKOOi2jtY1jelcP0ZNJGPAiEjg_b8gFAKIwpAumqPbP-iuH0OX3tCguBQCA0kQniAbkoTgvN6HujXhWwPWB-M6GdcH4_poPI3cTCO1c-4XPnV_AO72fDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195877012</pqid></control><display><type>article</type><title>On sequential strategies for loss functions with memory</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</creator><creatorcontrib>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</creatorcontrib><description>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.1013135</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer memory ; Decision-making ; Finite state machines ; Information theory ; Mathematical analysis ; Memoryless systems ; On-line systems ; Optimization ; Optimization methods ; Sequential estimation ; Stochastic processes ; Strategy ; Switching ; Weighting</subject><ispartof>IEEE transactions on information theory, 2002-07, Vol.48 (7), p.1947-1958</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</citedby><cites>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1013135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1013135$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, N.</creatorcontrib><creatorcontrib>Ordentlich, E.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Weinberger, M.J.</creatorcontrib><title>On sequential strategies for loss functions with memory</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</description><subject>Algorithms</subject><subject>Computer memory</subject><subject>Decision-making</subject><subject>Finite state machines</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Memoryless systems</subject><subject>On-line systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Sequential estimation</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>Switching</subject><subject>Weighting</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgIMoWKt3wcviQbxszeSxSY5SfBQKvdRzyGYT3bKPmuwi_ntTtgfx4GlmmG-GmQ-ha8ALAKwetqvtgmBMFoCBAuUnaAaci1wVnJ2iGcYgc8WYPEcXMe5SyTiQGRKbLovuc3TdUJsmi0Mwg3uvXcx8H7KmjykZOzvUfRezr3r4yFrX9uH7Ep1500R3dYxz9Pb8tF2-5uvNy2r5uM4tI3jIhaLK-qqiJS0raQQz1jJcckaL0ljHHYjCEsekLK03pWIeM0pV5az3RSUpnaO7ae8-9OnKOOi2jtY1jelcP0ZNJGPAiEjg_b8gFAKIwpAumqPbP-iuH0OX3tCguBQCA0kQniAbkoTgvN6HujXhWwPWB-M6GdcH4_poPI3cTCO1c-4XPnV_AO72fDg</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Merhav, N.</creator><creator>Ordentlich, E.</creator><creator>Seroussi, G.</creator><creator>Weinberger, M.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020701</creationdate><title>On sequential strategies for loss functions with memory</title><author>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Computer memory</topic><topic>Decision-making</topic><topic>Finite state machines</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Memoryless systems</topic><topic>On-line systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Sequential estimation</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>Switching</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, N.</creatorcontrib><creatorcontrib>Ordentlich, E.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Weinberger, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, N.</au><au>Ordentlich, E.</au><au>Seroussi, G.</au><au>Weinberger, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sequential strategies for loss functions with memory</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-07-01</date><risdate>2002</risdate><volume>48</volume><issue>7</issue><spage>1947</spage><epage>1958</epage><pages>1947-1958</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.1013135</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2002-07, Vol.48 (7), p.1947-1958
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2002_1013135
source IEEE/IET Electronic Library (IEL)
subjects Algorithms
Computer memory
Decision-making
Finite state machines
Information theory
Mathematical analysis
Memoryless systems
On-line systems
Optimization
Optimization methods
Sequential estimation
Stochastic processes
Strategy
Switching
Weighting
title On sequential strategies for loss functions with memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sequential%20strategies%20for%20loss%20functions%20with%20memory&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20N.&rft.date=2002-07-01&rft.volume=48&rft.issue=7&rft.spage=1947&rft.epage=1958&rft.pages=1947-1958&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.1013135&rft_dat=%3Cproquest_RIE%3E131914271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195877012&rft_id=info:pmid/&rft_ieee_id=1013135&rfr_iscdi=true