On sequential strategies for loss functions with memory
The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cos...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2002-07, Vol.48 (7), p.1947-1958 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1958 |
---|---|
container_issue | 7 |
container_start_page | 1947 |
container_title | IEEE transactions on information theory |
container_volume | 48 |
creator | Merhav, N. Ordentlich, E. Seroussi, G. Weinberger, M.J. |
description | The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended. |
doi_str_mv | 10.1109/TIT.2002.1013135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2002_1013135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1013135</ieee_id><sourcerecordid>131914271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKt3wcviQbxszeSxSY5SfBQKvdRzyGYT3bKPmuwi_ntTtgfx4GlmmG-GmQ-ha8ALAKwetqvtgmBMFoCBAuUnaAaci1wVnJ2iGcYgc8WYPEcXMe5SyTiQGRKbLovuc3TdUJsmi0Mwg3uvXcx8H7KmjykZOzvUfRezr3r4yFrX9uH7Ep1500R3dYxz9Pb8tF2-5uvNy2r5uM4tI3jIhaLK-qqiJS0raQQz1jJcckaL0ljHHYjCEsekLK03pWIeM0pV5az3RSUpnaO7ae8-9OnKOOi2jtY1jelcP0ZNJGPAiEjg_b8gFAKIwpAumqPbP-iuH0OX3tCguBQCA0kQniAbkoTgvN6HujXhWwPWB-M6GdcH4_poPI3cTCO1c-4XPnV_AO72fDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195877012</pqid></control><display><type>article</type><title>On sequential strategies for loss functions with memory</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</creator><creatorcontrib>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</creatorcontrib><description>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.1013135</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer memory ; Decision-making ; Finite state machines ; Information theory ; Mathematical analysis ; Memoryless systems ; On-line systems ; Optimization ; Optimization methods ; Sequential estimation ; Stochastic processes ; Strategy ; Switching ; Weighting</subject><ispartof>IEEE transactions on information theory, 2002-07, Vol.48 (7), p.1947-1958</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</citedby><cites>FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1013135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1013135$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, N.</creatorcontrib><creatorcontrib>Ordentlich, E.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Weinberger, M.J.</creatorcontrib><title>On sequential strategies for loss functions with memory</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</description><subject>Algorithms</subject><subject>Computer memory</subject><subject>Decision-making</subject><subject>Finite state machines</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Memoryless systems</subject><subject>On-line systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Sequential estimation</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>Switching</subject><subject>Weighting</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgIMoWKt3wcviQbxszeSxSY5SfBQKvdRzyGYT3bKPmuwi_ntTtgfx4GlmmG-GmQ-ha8ALAKwetqvtgmBMFoCBAuUnaAaci1wVnJ2iGcYgc8WYPEcXMe5SyTiQGRKbLovuc3TdUJsmi0Mwg3uvXcx8H7KmjykZOzvUfRezr3r4yFrX9uH7Ep1500R3dYxz9Pb8tF2-5uvNy2r5uM4tI3jIhaLK-qqiJS0raQQz1jJcckaL0ljHHYjCEsekLK03pWIeM0pV5az3RSUpnaO7ae8-9OnKOOi2jtY1jelcP0ZNJGPAiEjg_b8gFAKIwpAumqPbP-iuH0OX3tCguBQCA0kQniAbkoTgvN6HujXhWwPWB-M6GdcH4_poPI3cTCO1c-4XPnV_AO72fDg</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Merhav, N.</creator><creator>Ordentlich, E.</creator><creator>Seroussi, G.</creator><creator>Weinberger, M.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020701</creationdate><title>On sequential strategies for loss functions with memory</title><author>Merhav, N. ; Ordentlich, E. ; Seroussi, G. ; Weinberger, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7939cfdd3b3bd8a74acc40b5436bace5e176c2e488bcfab94f04339decff6d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Computer memory</topic><topic>Decision-making</topic><topic>Finite state machines</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Memoryless systems</topic><topic>On-line systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Sequential estimation</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>Switching</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, N.</creatorcontrib><creatorcontrib>Ordentlich, E.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Weinberger, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, N.</au><au>Ordentlich, E.</au><au>Seroussi, G.</au><au>Weinberger, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sequential strategies for loss functions with memory</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-07-01</date><risdate>2002</risdate><volume>48</volume><issue>7</issue><spage>1947</spage><epage>1958</epage><pages>1947-1958</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The problem of optimal sequential decision for individual sequences, relative to a class of competing off-line reference strategies, is studied for general loss functions with memory. This problem is motivated by applications in which actions may have "long-term" effects, or there is a cost for switching from one action to another. As a first step, we consider the case in which the reference strategies are taken from a finite set of generic "experts." We then focus on finite-state reference strategies, assuming finite action and observation spaces. We show that key properties, that hold for finite-state strategies in the context of memoryless loss functions, do not carry over to the case of loss functions with memory. As a result, an infinite family of randomized finite-state strategies is seen to be the most appropriate reference class for this case, and the problem is basically different from its memoryless counterpart. Based on Vovk's (1990) exponential weighting technique, infinite-horizon on-line decision schemes are devised. For an arbitrary sequence of observations of length n, the excess normalized loss of these schemes relative to the best expert in a corresponding reference class is shown to be upper-bounded by an O(n/sup -1/3/) term in the case of a finite class, or an O([(ln n)/n]/sup 1/3/) term for the class of randomized finite-state strategies. These results parallel the O(n/sup -1/2/) bounds attained by previous schemes for memoryless loss functions. By letting the number of states in the reference class grow, the notion of finite-state predictability is also extended.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.1013135</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2002-07, Vol.48 (7), p.1947-1958 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2002_1013135 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithms Computer memory Decision-making Finite state machines Information theory Mathematical analysis Memoryless systems On-line systems Optimization Optimization methods Sequential estimation Stochastic processes Strategy Switching Weighting |
title | On sequential strategies for loss functions with memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sequential%20strategies%20for%20loss%20functions%20with%20memory&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20N.&rft.date=2002-07-01&rft.volume=48&rft.issue=7&rft.spage=1947&rft.epage=1958&rft.pages=1947-1958&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.1013135&rft_dat=%3Cproquest_RIE%3E131914271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195877012&rft_id=info:pmid/&rft_ieee_id=1013135&rfr_iscdi=true |