Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles
The excessively high temperature poses a significant risk to battery health, accelerating degradation and causing damage. Despite the recognized importance of battery thermal management (BTM), numerous studies in this domain often overlook the distinct timescales associated with vehicle and battery...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-11, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | |
creator | Dong, Haoxuan Hu, Qiuhao Li, Dongjun Li, Zhaojian Song, Ziyou |
description | The excessively high temperature poses a significant risk to battery health, accelerating degradation and causing damage. Despite the recognized importance of battery thermal management (BTM), numerous studies in this domain often overlook the distinct timescales associated with vehicle and battery thermal dynamics. This oversight can compromise the efficacy and cost-effectiveness of BTM strategies in efficiently controlling battery temperature. This study proposes a novel predictive battery thermal and energy management ( p -BTEM) strategy for connected and automated electric vehicles. The p -BTEM leverages a cloud-enabled predictive control framework to synthesize the look-ahead constant and time-varying factors, e.g., vehicle, road, and traffic information. This synthesis aims to achieve global optimization of battery temperature in the Cloud while enabling local adaptations for vehicle acceleration and compressor power on the Vehicle End. This approach ensures proactive and economical regulation of battery temperature, especially in high temperature conditions, thereby maintaining the battery within optimal temperature ranges and reducing energy consumption in dynamic traffic scenarios. To assess the effectiveness of the p -BTEM, representative route simulations are conducted utilizing real-world data. The results reveal the exceptional performance of the p -BTEM in reducing battery cooling energy when compared to two benchmark strategies, with a minimum improvement of 8.58% and 10.31%, respectively. Moreover, the sensitivity analysis is performed to elaborate on the p -BTEM under the influence of traffic, communication, and algorithmic factors. |
doi_str_mv | 10.1109/TITS.2024.3494734 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3494734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759568</ieee_id><sourcerecordid>10_1109_TITS_2024_3494734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-39a3364ec7ee31cc46c2634e371d91b4213a40871d8b9f4dc2c21e887b5366e13</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFYfQHAxL5A6d_6SWdYQa6GiYHBpmExu2kh-ZBKFvL2J7cLVPedwzl18hNwCWwEwc59u07cVZ1yuhDQyFPKMLECpKGAM9PmsuQwMU-ySXPX955RKBbAgH68ei8oN1Q_SBzsM6EeaHtA3tqa2LWjSot-P9Nm2do8NtgMtO0_jrm3RDVj8ddbfQ9fY2SX1lPrK0Xc8VK7G_ppclLbu8eZ0lyR9TNL4Kdi9bLbxehc4YyAQxgqhJboQUYBzUjuuhUQRQmEglxyElSyaXJSbUhaOOw4YRWGuhNYIYkng-Nb5ru89ltmXrxrrxwxYNvPJZj7ZzCc78Zk2d8dNhYj_-qEySkfiF9oqYgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Haoxuan ; Hu, Qiuhao ; Li, Dongjun ; Li, Zhaojian ; Song, Ziyou</creator><creatorcontrib>Dong, Haoxuan ; Hu, Qiuhao ; Li, Dongjun ; Li, Zhaojian ; Song, Ziyou</creatorcontrib><description><![CDATA[The excessively high temperature poses a significant risk to battery health, accelerating degradation and causing damage. Despite the recognized importance of battery thermal management (BTM), numerous studies in this domain often overlook the distinct timescales associated with vehicle and battery thermal dynamics. This oversight can compromise the efficacy and cost-effectiveness of BTM strategies in efficiently controlling battery temperature. This study proposes a novel predictive battery thermal and energy management (<inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM) strategy for connected and automated electric vehicles. The <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM leverages a cloud-enabled predictive control framework to synthesize the look-ahead constant and time-varying factors, e.g., vehicle, road, and traffic information. This synthesis aims to achieve global optimization of battery temperature in the Cloud while enabling local adaptations for vehicle acceleration and compressor power on the Vehicle End. This approach ensures proactive and economical regulation of battery temperature, especially in high temperature conditions, thereby maintaining the battery within optimal temperature ranges and reducing energy consumption in dynamic traffic scenarios. To assess the effectiveness of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM, representative route simulations are conducted utilizing real-world data. The results reveal the exceptional performance of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM in reducing battery cooling energy when compared to two benchmark strategies, with a minimum improvement of 8.58% and 10.31%, respectively. Moreover, the sensitivity analysis is performed to elaborate on the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM under the influence of traffic, communication, and algorithmic factors.]]></description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3494734</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Batteries ; battery thermal management ; Clouds ; Connected and automated vehicles ; Cooling ; dynamic programming ; electric vehicles ; model predictive control ; Optimization ; Predictive control ; Roads ; Temperature distribution ; Thermal management ; Vehicle dynamics ; vehicle-to-cloud connectivity</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>dongjun.li@u.nus.edu ; lizhaoj1@egr.msu.edu ; donghaox@foxmail.com ; ziyou@nus.edu.sg ; bhu@farasis.com</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10759568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10759568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Haoxuan</creatorcontrib><creatorcontrib>Hu, Qiuhao</creatorcontrib><creatorcontrib>Li, Dongjun</creatorcontrib><creatorcontrib>Li, Zhaojian</creatorcontrib><creatorcontrib>Song, Ziyou</creatorcontrib><title>Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description><![CDATA[The excessively high temperature poses a significant risk to battery health, accelerating degradation and causing damage. Despite the recognized importance of battery thermal management (BTM), numerous studies in this domain often overlook the distinct timescales associated with vehicle and battery thermal dynamics. This oversight can compromise the efficacy and cost-effectiveness of BTM strategies in efficiently controlling battery temperature. This study proposes a novel predictive battery thermal and energy management (<inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM) strategy for connected and automated electric vehicles. The <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM leverages a cloud-enabled predictive control framework to synthesize the look-ahead constant and time-varying factors, e.g., vehicle, road, and traffic information. This synthesis aims to achieve global optimization of battery temperature in the Cloud while enabling local adaptations for vehicle acceleration and compressor power on the Vehicle End. This approach ensures proactive and economical regulation of battery temperature, especially in high temperature conditions, thereby maintaining the battery within optimal temperature ranges and reducing energy consumption in dynamic traffic scenarios. To assess the effectiveness of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM, representative route simulations are conducted utilizing real-world data. The results reveal the exceptional performance of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM in reducing battery cooling energy when compared to two benchmark strategies, with a minimum improvement of 8.58% and 10.31%, respectively. Moreover, the sensitivity analysis is performed to elaborate on the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM under the influence of traffic, communication, and algorithmic factors.]]></description><subject>Aerodynamics</subject><subject>Batteries</subject><subject>battery thermal management</subject><subject>Clouds</subject><subject>Connected and automated vehicles</subject><subject>Cooling</subject><subject>dynamic programming</subject><subject>electric vehicles</subject><subject>model predictive control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Roads</subject><subject>Temperature distribution</subject><subject>Thermal management</subject><subject>Vehicle dynamics</subject><subject>vehicle-to-cloud connectivity</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsFYfQHAxL5A6d_6SWdYQa6GiYHBpmExu2kh-ZBKFvL2J7cLVPedwzl18hNwCWwEwc59u07cVZ1yuhDQyFPKMLECpKGAM9PmsuQwMU-ySXPX955RKBbAgH68ei8oN1Q_SBzsM6EeaHtA3tqa2LWjSot-P9Nm2do8NtgMtO0_jrm3RDVj8ddbfQ9fY2SX1lPrK0Xc8VK7G_ppclLbu8eZ0lyR9TNL4Kdi9bLbxehc4YyAQxgqhJboQUYBzUjuuhUQRQmEglxyElSyaXJSbUhaOOw4YRWGuhNYIYkng-Nb5ru89ltmXrxrrxwxYNvPJZj7ZzCc78Zk2d8dNhYj_-qEySkfiF9oqYgE</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Dong, Haoxuan</creator><creator>Hu, Qiuhao</creator><creator>Li, Dongjun</creator><creator>Li, Zhaojian</creator><creator>Song, Ziyou</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/dongjun.li@u.nus.edu</orcidid><orcidid>https://orcid.org/lizhaoj1@egr.msu.edu</orcidid><orcidid>https://orcid.org/donghaox@foxmail.com</orcidid><orcidid>https://orcid.org/ziyou@nus.edu.sg</orcidid><orcidid>https://orcid.org/bhu@farasis.com</orcidid></search><sort><creationdate>20241120</creationdate><title>Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles</title><author>Dong, Haoxuan ; Hu, Qiuhao ; Li, Dongjun ; Li, Zhaojian ; Song, Ziyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-39a3364ec7ee31cc46c2634e371d91b4213a40871d8b9f4dc2c21e887b5366e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamics</topic><topic>Batteries</topic><topic>battery thermal management</topic><topic>Clouds</topic><topic>Connected and automated vehicles</topic><topic>Cooling</topic><topic>dynamic programming</topic><topic>electric vehicles</topic><topic>model predictive control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Roads</topic><topic>Temperature distribution</topic><topic>Thermal management</topic><topic>Vehicle dynamics</topic><topic>vehicle-to-cloud connectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Haoxuan</creatorcontrib><creatorcontrib>Hu, Qiuhao</creatorcontrib><creatorcontrib>Li, Dongjun</creatorcontrib><creatorcontrib>Li, Zhaojian</creatorcontrib><creatorcontrib>Song, Ziyou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Haoxuan</au><au>Hu, Qiuhao</au><au>Li, Dongjun</au><au>Li, Zhaojian</au><au>Song, Ziyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11-20</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract><![CDATA[The excessively high temperature poses a significant risk to battery health, accelerating degradation and causing damage. Despite the recognized importance of battery thermal management (BTM), numerous studies in this domain often overlook the distinct timescales associated with vehicle and battery thermal dynamics. This oversight can compromise the efficacy and cost-effectiveness of BTM strategies in efficiently controlling battery temperature. This study proposes a novel predictive battery thermal and energy management (<inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM) strategy for connected and automated electric vehicles. The <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM leverages a cloud-enabled predictive control framework to synthesize the look-ahead constant and time-varying factors, e.g., vehicle, road, and traffic information. This synthesis aims to achieve global optimization of battery temperature in the Cloud while enabling local adaptations for vehicle acceleration and compressor power on the Vehicle End. This approach ensures proactive and economical regulation of battery temperature, especially in high temperature conditions, thereby maintaining the battery within optimal temperature ranges and reducing energy consumption in dynamic traffic scenarios. To assess the effectiveness of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM, representative route simulations are conducted utilizing real-world data. The results reveal the exceptional performance of the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM in reducing battery cooling energy when compared to two benchmark strategies, with a minimum improvement of 8.58% and 10.31%, respectively. Moreover, the sensitivity analysis is performed to elaborate on the <inline-formula> <tex-math notation="LaTeX">p</tex-math> </inline-formula>-BTEM under the influence of traffic, communication, and algorithmic factors.]]></abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3494734</doi><tpages>13</tpages><orcidid>https://orcid.org/dongjun.li@u.nus.edu</orcidid><orcidid>https://orcid.org/lizhaoj1@egr.msu.edu</orcidid><orcidid>https://orcid.org/donghaox@foxmail.com</orcidid><orcidid>https://orcid.org/ziyou@nus.edu.sg</orcidid><orcidid>https://orcid.org/bhu@farasis.com</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-11, p.1-13 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2024_3494734 |
source | IEEE Electronic Library (IEL) |
subjects | Aerodynamics Batteries battery thermal management Clouds Connected and automated vehicles Cooling dynamic programming electric vehicles model predictive control Optimization Predictive control Roads Temperature distribution Thermal management Vehicle dynamics vehicle-to-cloud connectivity |
title | Predictive Battery Thermal and Energy Management for Connected and Automated Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Battery%20Thermal%20and%20Energy%20Management%20for%20Connected%20and%20Automated%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Dong,%20Haoxuan&rft.date=2024-11-20&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3494734&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3494734%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759568&rfr_iscdi=true |