eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information

In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.21380-21392
Hauptverfasser: Wang, Xiaoyu, Taitler, Ayal, Smirnov, Ilia, Sanner, Scott, Abdulhai, Baher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21392
container_issue 12
container_start_page 21380
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Wang, Xiaoyu
Taitler, Ayal
Smirnov, Ilia
Sanner, Scott
Abdulhai, Baher
description In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.
doi_str_mv 10.1109/TITS.2024.3462951
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3462951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10700669</ieee_id><sourcerecordid>10_1109_TITS_2024_3462951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPCQu3TmS9qk8TaGc4Xqhuu9pE0yIlsjSRns39u6HTx9Lx_P-x4ehB6BzACIfKmKajujhKYzlnIqM7hCE8iyPCEE-PWYaZpIkpFbdBfj9_BNM4AJOpqP-VdZfD6_4rnWwcTouh3eqNA7tcfrJppwVI3bu_6Ee483wR98b3AVlLWuxVu36wZu4X3QrlO98x1uTrg0RxPUbpxaudj74NqBKjrrw-EPukc3Vu2jebjcKaqWb9VilZTr92IxL5OWM5kw0VoOoHMpgDZaWQmpaIhSKZdglACh84Zrk9mcEdEooXkGhEkiKMstNWyK4DzbBh9jMLb-Ce6gwqkGUo_e6tFbPXqrL96GztO544wx_3hBCOeS_QL382r-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</creator><creatorcontrib>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</creatorcontrib><description>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3462951</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive traffic signal control ; Cameras ; Collaboration ; Decentralized control ; Decision making ; Delays ; Markov decision processes ; multi-agent reinforcement learning ; Observability ; Optimization ; partial observability ; state factorization ; Training ; Uncertainty ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21380-21392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</cites><orcidid>0000-0003-1587-6307 ; 0000-0003-3919-6883 ; 0000-0002-8787-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10700669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10700669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Taitler, Ayal</creatorcontrib><creatorcontrib>Smirnov, Ilia</creatorcontrib><creatorcontrib>Sanner, Scott</creatorcontrib><creatorcontrib>Abdulhai, Baher</creatorcontrib><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</description><subject>Adaptive traffic signal control</subject><subject>Cameras</subject><subject>Collaboration</subject><subject>Decentralized control</subject><subject>Decision making</subject><subject>Delays</subject><subject>Markov decision processes</subject><subject>multi-agent reinforcement learning</subject><subject>Observability</subject><subject>Optimization</subject><subject>partial observability</subject><subject>state factorization</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPCQu3TmS9qk8TaGc4Xqhuu9pE0yIlsjSRns39u6HTx9Lx_P-x4ehB6BzACIfKmKajujhKYzlnIqM7hCE8iyPCEE-PWYaZpIkpFbdBfj9_BNM4AJOpqP-VdZfD6_4rnWwcTouh3eqNA7tcfrJppwVI3bu_6Ee483wR98b3AVlLWuxVu36wZu4X3QrlO98x1uTrg0RxPUbpxaudj74NqBKjrrw-EPukc3Vu2jebjcKaqWb9VilZTr92IxL5OWM5kw0VoOoHMpgDZaWQmpaIhSKZdglACh84Zrk9mcEdEooXkGhEkiKMstNWyK4DzbBh9jMLb-Ce6gwqkGUo_e6tFbPXqrL96GztO544wx_3hBCOeS_QL382r-</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Xiaoyu</creator><creator>Taitler, Ayal</creator><creator>Smirnov, Ilia</creator><creator>Sanner, Scott</creator><creator>Abdulhai, Baher</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1587-6307</orcidid><orcidid>https://orcid.org/0000-0003-3919-6883</orcidid><orcidid>https://orcid.org/0000-0002-8787-2578</orcidid></search><sort><creationdate>202412</creationdate><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><author>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive traffic signal control</topic><topic>Cameras</topic><topic>Collaboration</topic><topic>Decentralized control</topic><topic>Decision making</topic><topic>Delays</topic><topic>Markov decision processes</topic><topic>multi-agent reinforcement learning</topic><topic>Observability</topic><topic>Optimization</topic><topic>partial observability</topic><topic>state factorization</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Taitler, Ayal</creatorcontrib><creatorcontrib>Smirnov, Ilia</creatorcontrib><creatorcontrib>Sanner, Scott</creatorcontrib><creatorcontrib>Abdulhai, Baher</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaoyu</au><au>Taitler, Ayal</au><au>Smirnov, Ilia</au><au>Sanner, Scott</au><au>Abdulhai, Baher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>21380</spage><epage>21392</epage><pages>21380-21392</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3462951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1587-6307</orcidid><orcidid>https://orcid.org/0000-0003-3919-6883</orcidid><orcidid>https://orcid.org/0000-0002-8787-2578</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21380-21392
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3462951
source IEEE Electronic Library (IEL)
subjects Adaptive traffic signal control
Cameras
Collaboration
Decentralized control
Decision making
Delays
Markov decision processes
multi-agent reinforcement learning
Observability
Optimization
partial observability
state factorization
Training
Uncertainty
Vehicle dynamics
title eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eMARLIN+:%20Addressing%20Partial%20Observability%20to%20Promote%20Traffic%20Signal%20Coordination%20by%20Leveraging%20Historical%20Information&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Xiaoyu&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=21380&rft.epage=21392&rft.pages=21380-21392&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3462951&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3462951%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10700669&rfr_iscdi=true