eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information
In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynami...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.21380-21392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21392 |
---|---|
container_issue | 12 |
container_start_page | 21380 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Wang, Xiaoyu Taitler, Ayal Smirnov, Ilia Sanner, Scott Abdulhai, Baher |
description | In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme. |
doi_str_mv | 10.1109/TITS.2024.3462951 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3462951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10700669</ieee_id><sourcerecordid>10_1109_TITS_2024_3462951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPCQu3TmS9qk8TaGc4Xqhuu9pE0yIlsjSRns39u6HTx9Lx_P-x4ehB6BzACIfKmKajujhKYzlnIqM7hCE8iyPCEE-PWYaZpIkpFbdBfj9_BNM4AJOpqP-VdZfD6_4rnWwcTouh3eqNA7tcfrJppwVI3bu_6Ee483wR98b3AVlLWuxVu36wZu4X3QrlO98x1uTrg0RxPUbpxaudj74NqBKjrrw-EPukc3Vu2jebjcKaqWb9VilZTr92IxL5OWM5kw0VoOoHMpgDZaWQmpaIhSKZdglACh84Zrk9mcEdEooXkGhEkiKMstNWyK4DzbBh9jMLb-Ce6gwqkGUo_e6tFbPXqrL96GztO544wx_3hBCOeS_QL382r-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</creator><creatorcontrib>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</creatorcontrib><description>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3462951</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive traffic signal control ; Cameras ; Collaboration ; Decentralized control ; Decision making ; Delays ; Markov decision processes ; multi-agent reinforcement learning ; Observability ; Optimization ; partial observability ; state factorization ; Training ; Uncertainty ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21380-21392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</cites><orcidid>0000-0003-1587-6307 ; 0000-0003-3919-6883 ; 0000-0002-8787-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10700669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10700669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Taitler, Ayal</creatorcontrib><creatorcontrib>Smirnov, Ilia</creatorcontrib><creatorcontrib>Sanner, Scott</creatorcontrib><creatorcontrib>Abdulhai, Baher</creatorcontrib><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</description><subject>Adaptive traffic signal control</subject><subject>Cameras</subject><subject>Collaboration</subject><subject>Decentralized control</subject><subject>Decision making</subject><subject>Delays</subject><subject>Markov decision processes</subject><subject>multi-agent reinforcement learning</subject><subject>Observability</subject><subject>Optimization</subject><subject>partial observability</subject><subject>state factorization</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPCQu3TmS9qk8TaGc4Xqhuu9pE0yIlsjSRns39u6HTx9Lx_P-x4ehB6BzACIfKmKajujhKYzlnIqM7hCE8iyPCEE-PWYaZpIkpFbdBfj9_BNM4AJOpqP-VdZfD6_4rnWwcTouh3eqNA7tcfrJppwVI3bu_6Ee483wR98b3AVlLWuxVu36wZu4X3QrlO98x1uTrg0RxPUbpxaudj74NqBKjrrw-EPukc3Vu2jebjcKaqWb9VilZTr92IxL5OWM5kw0VoOoHMpgDZaWQmpaIhSKZdglACh84Zrk9mcEdEooXkGhEkiKMstNWyK4DzbBh9jMLb-Ce6gwqkGUo_e6tFbPXqrL96GztO544wx_3hBCOeS_QL382r-</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Xiaoyu</creator><creator>Taitler, Ayal</creator><creator>Smirnov, Ilia</creator><creator>Sanner, Scott</creator><creator>Abdulhai, Baher</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1587-6307</orcidid><orcidid>https://orcid.org/0000-0003-3919-6883</orcidid><orcidid>https://orcid.org/0000-0002-8787-2578</orcidid></search><sort><creationdate>202412</creationdate><title>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</title><author>Wang, Xiaoyu ; Taitler, Ayal ; Smirnov, Ilia ; Sanner, Scott ; Abdulhai, Baher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-37cf611d89712bdaf9147b0aa4691ea717d8b6de5f8307ba7d65103907238f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive traffic signal control</topic><topic>Cameras</topic><topic>Collaboration</topic><topic>Decentralized control</topic><topic>Decision making</topic><topic>Delays</topic><topic>Markov decision processes</topic><topic>multi-agent reinforcement learning</topic><topic>Observability</topic><topic>Optimization</topic><topic>partial observability</topic><topic>state factorization</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Taitler, Ayal</creatorcontrib><creatorcontrib>Smirnov, Ilia</creatorcontrib><creatorcontrib>Sanner, Scott</creatorcontrib><creatorcontrib>Abdulhai, Baher</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaoyu</au><au>Taitler, Ayal</au><au>Smirnov, Ilia</au><au>Sanner, Scott</au><au>Abdulhai, Baher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>21380</spage><epage>21392</epage><pages>21380-21392</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In Adaptive Traffic Signal Control (ATSC) systems, real-time responsiveness relies on sensor data for signal timing adjustments. However, limitations in sensor capabilities result in an incomplete representation of the true system state. Hence, practical controllers can only access restricted dynamical features within specific detection areas that lead to partial observability, where identical observations may correspond to different system dynamics, hindering optimal decision-making. To address these challenges, we explore the existence and sources of partial observability in ATSC, formulating it within the framework of Markov decision processes. The global ATSC problem is factorized and decoupled to reveal structural properties in underlying system dynamics. This enhanced understanding reveals the dominant information that should be considered by decentralized controllers and guides the derivation of eMARLIN+. Experimental validation on synthetic and real-world scenarios demonstrates eMARLIN+'s effectiveness in enhancing agent-level coordination and surpassing strong baselines in minimizing travel delay. Additional diagnostic analysis of our learned controller further validates the effectiveness of our information-sharing scheme.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3462951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1587-6307</orcidid><orcidid>https://orcid.org/0000-0003-3919-6883</orcidid><orcidid>https://orcid.org/0000-0002-8787-2578</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21380-21392 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2024_3462951 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive traffic signal control Cameras Collaboration Decentralized control Decision making Delays Markov decision processes multi-agent reinforcement learning Observability Optimization partial observability state factorization Training Uncertainty Vehicle dynamics |
title | eMARLIN+: Addressing Partial Observability to Promote Traffic Signal Coordination by Leveraging Historical Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eMARLIN+:%20Addressing%20Partial%20Observability%20to%20Promote%20Traffic%20Signal%20Coordination%20by%20Leveraging%20Historical%20Information&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Xiaoyu&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=21380&rft.epage=21392&rft.pages=21380-21392&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3462951&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3462951%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10700669&rfr_iscdi=true |